APPENDIX

How to identify hereditary cancer through family history

Cancer that runs in families creates certain patterns that can be identified by health care providers. Signs of hereditary cancer in family histories include:

- The **same type(s) of cancer** in **two or more close relatives** on the same side of the family, often over **multiple generations** on the same side of the family
- o cancer **diagnoses at younger ages** than expected
- **multiple primary** tumors
- rare cancers
- **pattern** of cancer history suggestive of a known hereditary cancer syndrome, such as breast, ovarian, pancreatic and prostate cancer, or colorectal and endometrial cancer

Specific signs of hereditary prostate cancer in addition to the above include:

- Personal history of prostate cancer with ≥1 close relatives¹ with prostate cancer.
 One relative must have evidence of high risk or metastatic disease.
- Personal history of prostate cancer with ≥ 2 close relatives with prostate, pancreatic, and/or breast cancer regardless of age or stage

¹Note that close relatives typically refer to first degree (parents, siblings, children) and second degree (uncles, aunts, nephews, nieces, grandparents, and grandchildren) relatives on the same side of the family.

When taking a cancer family history, it is important to:

- Consider at least 3 generations, on both maternal and paternal sides of family, in first and second degree relatives
- Consider ethnic background
- R all types of cancer, and age at diagnosis when possible
- When histories of common metastatic sites are given, encourage further inquiry about the primary site
- Ask for updates to cancer family history over time

Supplementary Table 1. Advantages and disadvantages of tissue and liquid biopsy for somatic genetic testing in metastatic prostate cancer¹⁻⁵

somatic genetic testing in metastatic prostate cancer ¹⁻⁵			
	Advantages	Disadvantages	
Tissue biopsy	Provides direct sampling of	Specialty expertise required	
specimen	tumor tissue	for tissue acquisition	
	High clinical and analytical	Biopsy procedure is invasive	
	sensitivity	and with risk of procedural	
	Archival tissue may be	complications	
	available for testing	• Difficult to repeat biopsy if	
	• Well-established method for	necessary	
	use in clinical settings (i.e.,	May not reflect tumor	
	easily integrated into the	heterogeneity	
	diagnostic workflow)	Diagnostic biopsy may not	
	Can detect all mutations	reflect tumor evolution	
	relevant for treatment decisions	(subclones that expand in the	
	(germline and somatic)	metastatic phase may non-	
	• Does not require upfront	uniformly represented)	
	consent for germline genetic	• Serial biopsy not feasible for	
	testing (although does require	some populations/impractical	
	general education of the	for periodic monitoring of	
	referring clinician or	treatment response	
	pathologist around the chance	Obtaining samples from	
	of finding something that may	metastases may be challenging	
	require germline confirmation)	due to the invasive nature of	
	Does not require germline	the procedure or location of	
	confirmation of variants of	metastatic lesions	
	uncertain significance	• Both archival tissue and fresh	
	(independent of patient	biopsies can have a significant	
	eligibility of provincially	failure rate if hybrid capture	
	funded germline testing)	technique is used for NGS	

	• If the same game namel is used	May not distinguish between
	• If the same gene panel is used	• May not distinguish between
	for somatic testing and	germline and somatic
	germline testing, a tumor-first	mutations, thus may need to be
	testing approach can allow for	followed by germline testing
	triaging of patients reflexively,	to inform familial and personal
	which reduces the burden on	risk
	the clinical genetics service	
Liquid biopsy	Minimally invasive procedure	• Can be expensive to validate
specimen	to obtain sample (advantageous	and offer routinely, depending
	in patients who have	on the biomarker (hotspot vs.
	comorbidities)	multi-gene panel)
	• Faster turnaround time than	• Can lead to false negatives if
	tissue biopsy	there is not enough ctDNA
	• Can detect all mutations	being shed
	relevant for treatment decisions	• Can miss homozygous somatic
	(germline and somatic) but	deletions
	results require confirmatory	• Not typically offered to all
	germline testing if not	patients earlier in the disease
	performed concurrently	course due to insufficient
	• Convenient for serial sampling/	disease burden (ctDNA
	real-time monitoring for drug	shedding may be insufficient
	response and resistance	for detection)
	 Potential to reveal spatial and 	 More complex requirements
	temporal tumor heterogeneity	for specimen collection and
	 Less resource intensive (e.g., 	transportation with significant
	does not require digital imaging	preservation failure rates
	as performing tissue biopsies	(special collection tubes are
	usually do)	needed to prevent hemolysis
		during transportation)
		during transportation)

References

- Cheng H, Powers J, Schaffer K, et al. Practical methods for integrating genetic testing into clinical practice for advanced prostate cancer. *Am Soc Clin Oncol Educ Book* 2018; 38:372-81. https://doi.org/10.1200/EDBK_205441
- 2. Cheng H.H, Sokolova AO, Schaeffer EM, et al. Germline and somatic mutations in prostate cncer for the clinician. *J Natl Compr Canc Netw* 2019;17:515-21. https://doi.org/10.6004/jnccn.2019.7307

- 3. Di Capua D, Bracken-Clarke D, Ronan K, et al. The liquid biopsy for lung cancer: State of the art, limitations, and future developments. *Cancers (Basel)* 2021;13:3923. https://doi.org/10.3390/cancers13163923
- Gonzalez-Billalabeitia E, Conteduca V, Wetterskog D, et al. Circulating tumor DNA in advanced prostate cancer: Transitioning from discovery to a clinically implemented test. *Prostate Cancer Prostatic Dis* 2019;22:195-205. https://doi.org/10.1038/s41391-018-0098-x
- 5. Ossandon MR, Agrawal L, Bernhard EJ, et al. Circulating tumor DNA assays in clinical cancer research. *J Natl Cancer Inst* 2018;110;929-34. https://doi.org/10.1093/jnci/djy105