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Recently, there has been significant interest in the 
application of artificial intelligence (AI) technology 
to cancer diagnostics. In uro-oncology, this is evident 

by the significant growth in publications focusing on AI and 
prostate cancer (PCa) histopathology.1 Recent advancements 
in digital and computer vision technologies have the poten-
tial to revolutionize the diagnosis and grading of PCa. In 
conjunction with well-designed AI models, core prostate 
biopsy imaging and whole slide imaging (WSI) techniques 
could lead to quicker, more reliable and exact diagnoses.1,2 

These advancements would increase automation and pro-
vide diagnostic standardization, with the added benefit of 
reducing workloads on overburdened pathology depart-
ments.1,2 Despite this immense potential, many questions 
have been raised about the feasibility and clinical applicabil-
ity of these technologies in urologic oncology.

The application of AI in PCa diagnostics has largely 
focused on machine learning (ML) — a branch of AI based 
on the development and training of algorithms with the abil-
ity to learn from historical data inputs, without explicitly 
programming a set of matching outputs to inputs.3 Deep 
learning (DL) is a subcategory of ML based on artificial neu-
ral networks that mimic the function of human neurons. Like 
the feature detection system of the sensory nervous system, 
DL uses a multilayer approach to progressively extract fea-
tures from raw input, making it particularly facile with image 
processing.3 Digitization has allowed groups to create foun-
dational reference sets for AI models with thousands of data 
points linking images with their respective expert-assigned 
Gleason scores.4-6 From this backdrop, AI machines could 
be used to develop grading outputs that reduce pathologist 
inter-variability and increase diagnostic accuracy. 

The ability to distinguish between benign and malig-
nant disease is fundamental in pathology, thus represent-
ing a requisite capability for any serviceable AI model.6,7 

Campanella et al demonstrated that AI models can identify 
malignancy and exclude benign tissue samples for various 
cancers (including PCa) with extraordinarily high sensitivity.5 
Further, a study conducted by Han et al compared seven dif-
ferent AI models and found that all were capable of making 
the determination between cancerous and non-cancerous 
tissues, with error rates of only 6–14%.8 These findings sug-
gest that several ML and DL models could be used to auto-
matically screen pathology samples to identify benign slides. 
These samples could subsequently be excluded, while those 
determined to be suspicious or malignant could be sent for 
formal or secondary review by a pathologist. Applying the 
technology in this fashion would triage incoming samples, 
leading to more effective resource utilization. 

Beyond the determination of malignancy, the ideal AI 
model needs to be able to make distinctions between high- 
and low-grade disease.6,7 This has already been accom-
plished by some groups, including Silva-Rodriquez et al. 
They reviewed 6682 digitalized prostate biopsy cores using 
an AI model that automatically supported the pathologist’s 
analysis of WSI using cribriform pattern detection. This model 
was designed to identify cribriform architecture in Gleason 
4, which is associated with adverse prognostic features that 
imply higher-risk disease. Their model demonstrated excel-
lent pattern discrimination, with overall performance similar 
to that of general pathologists.9 In another study, a similar AI 
model was employed to detect these cribriform patterns in 
prostate needle biopsies. This model achieved a sensitivity 
of 0.9, with limited false-positives.10 Despite these successes, 
it is important to note that different AI models vary in their 
grading accuracy. For example, it has been shown that mod-
els employing tissue component maps (TCMs) outperform 
those that use raw inputs, particularly when analyzing the 
most aggressive PCa tissue types (i.e., Gleason 5).11 Models, 
such as the aforementioned, demonstrate utility beyond the 
triage setting and showcase their potential to assist patholo-
gists with grading through the detection and identification 
of suspicious architectures.  

Subspecialized genitourinary (GU) pathologists represent 
the gold standard in histopathological analysis of PCa; how-
ever, not every center has the resources to employ these 
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niche and expertly trained professionals. General patholo-
gists typically serve as the backbone in many departments 
due to their broad knowledge base and clinical flexibility. 
Some groups have suggested that AI technology could serve 
as excellent adjunct tools to improve the diagnostic capabil-
ity of general pathologists.9 For example, Nagpal et al com-
pared the rate of diagnostic agreement between a DL system 
with both general and GU pathologists. The overall rate of 
agreement, using digital images of prostate tissues samples, 
was approximately 95% in the diagnosis of malignancy for 
all groups; however, the DL system outperformed general 
pathologists in the Gleason scoring of malignant specimens. 
The AI model obtained a 71.7% rate of agreement with 
GU pathologists compared to a 58% rate of agreement for 
general pathologists.12 Bulten et al developed a similar DL 
model, which also showed high agreement with their ref-
erence standard — a data set that had been developed by 
expert consensus. In fact, the DL system performed com-
parably to pathologists with more than 15 years of experi-
ence and managed to outperform those with less than 15 
years’ experience.7 Taken together, these findings clearly 
demonstrate the ability of these models to address gaps in 
both service and experience, with some utility in supporting 
clinical decisions. 

Despite the increasing demand for pathology services, 
there has been a decline in the number of practicing patholo-
gists in recent years.13 Given that this phenomenon is complex 
and multifactorial,14 centers may wish to pursue streamlined 
options that mitigate these human resource deficits. Various 
studies have shown that AI models can performed reasonably 
well, despite the relatively early stage of development;5-12 
however, when it comes to the histopathological diagnosis of 
disease, it is important to recognize that these models are only 
capable of lending some of the expertise of GU pathologists. 
Hence, current AI models would not be capable of outper-
forming the diagnostic abilities or substitute for the clinical 
acumen of these highly trained subspecialists.

The ability for AI models to learn from previous data and 
create new outputs is unquestionably fascinating. Studies 
suggest that the implementation of this technology may bring 
novelty and improved accuracy to the diagnosis of PCa by 
providing standardization in Gleason scoring; however, the 
development of this technology and the performance of rig-
orous testing takes incredible amounts of resources, includ-
ing knowledge, time, and money. While this technology 
has the potential to provide practical, clinical, and financial 
value to the resource-rich centers that employ them, it may 
simply be unattainable for resource-challenged institutions 
and jurisdictions. 

Additional concerns have been raised about the gener-
alizability of AI studies, particularly when considering the 
applicability of AI technology to patients at non-academic 
sites (i.e., community hospitals), multinational cohorts, or 

those of minority subgroups.15 Since most studied AI models 
are developed using data from a single academic center, they 
risk inherent bias from their respective patient population.16 
The recent Prostate cANcer graDe Assessment (PANDA) 
challenge sought to address these limitations as the largest 
histopathology competition to date; the goal was to catalyze 
the development of reproducible AI algorithms using over 
10 000 multicenter, multinational, digitized prostate biop-
sies.16 They validated algorithms that achieved an incredible 
0.862 κ and 0.868 κ with expert uropathologists on United 
States and European external validation sets, respectively.16 
While this finding certainly shows promise, AI output for 
foreign cases, such as histological variants or samples with 
chronic inflammation, is still unknown. Fortunately, it may 
be possible to mitigate the risk of critical predictive errors 
using an algorithmic audit to identify potential blind spots 
within an AI model prior to clinical deployment.17 Beyond 
multinational competitions and AI auditing, continued efforts 
to establish generalizability, such as adequately powered 
studies (i.e., adequate sample sizes) and the adoption of 
standardized reporting in AI research (using guidelines such 
as the Radiomics Quality Score18 or STREAM-URO frame-
work19), should be encouraged. Future research could also 
focus on clinical application, such as the prediction of long-
term outcomes, in order to demonstrate utility beyond pure 
pathological science. 

While AI studies in PCa have been promising, they have 
not been able to demonstrate the superiority of AI models 
compared to the diagnostic prowess and clinical perfor-
mance of GU pathologists. Despite the apparent utility of 
this technology in bridging various gaps associated with 
general pathology assessment, it is evident that AI models 
in their current form are not “ready for prime time” nor 
to supplant our GU pathologists. For AI technology to be 
accepted, employed, and trusted in the field, more research 
needs to be done to ensure this technology is widely cost-
effective, scalable, reproducible, generalizable, and provides 
meaningful outputs at a level that exceeds the standard of 
care. Evidently, this is quite a tall order.
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