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ecently, there has been significant interest in the application of AI technology to cancer 
diagnostics. In uro-oncology, this is evident by the significant growth in publications 
focusing on AI and prostate cancer (PCa) histopathology. (1) Recent advancements in 

digital and computer vision technologies have the potential to revolutionize the diagnosis and 
grading of PCa.  In conjunction with well-designed AI models, core prostate biopsy imaging and 
whole slide imaging (WSI) techniques could lead to quicker, more reliable and exact diagnoses. 
(1, 2) These advancements would increase automation and provide diagnostic standardization, 
with the added benefit of reducing workloads on overburdened pathology departments. (1, 2) 
Despite this immense potential, many questions have been raised about the feasibility and 
clinical applicability of these technologies in urologic oncology. 

The application of AI in PCa diagnostics has largely focused on machine learning (ML); 
a branch of AI based on the development and training of algorithms with the ability to learn from 
historical data inputs, without explicitly programming a set of matching outputs to inputs. (3) 
Deep Learning (DL) is a subcategory of ML based on artificial neural networks that mimic the 
function of human neurons. Like the feature detection system of the sensory nervous system, DL 
uses a multi-layer approach to progressively extract features from raw input, making it 
particularly facile with image processing. (3) Digitization has allowed groups to create 
foundational references sets for AI models with thousands of data points linking images with 
their respective expert-assigned Gleason scores. (4-6) From this backdrop, AI machines could be 
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used to develop grading outputs that reduce pathologist inter-variability and increase diagnostic 
accuracy.  

The ability to distinguish between benign and malignant disease is fundamental in 
pathology, thus representing a requisite capability for any serviceable AI model. (6, 7). 
Campanella et al, demonstrated that AI models can identify malignancy and exclude benign 
tissue samples for various cancers (including PCa) with extraordinarily high sensitivity. (5) 
Further, a study conducted by Han et al, compared seven different AI models and found that all 
were capable of making the determination between cancerous and non-cancerous tissues with 
error rates of only 6-14%. (8) These findings suggest that several ML and DL models could be 
used to automatically screen pathology samples to identify benign slides. These samples could 
subsequently be excluded, while those determined to be suspicious or malignant could be sent 
for formal or secondary review by a pathologist. Applying the technology in this fashion would 
triage incoming samples, leading to more effective resource utilization.  

Beyond the determination of malignancy, the ideal AI model needs to be able to make 
distinctions between high- and low-grade disease. (6, 7)  Incredibly, this feat has already been 
accomplished by some groups, including Silva-Rodriquez et al. They reviewed 6682 digitalized 
prostate biopsy cores using an AI model that automatically supported the pathologist’s analysis 
of whole block imaging (WBI) using cribriform pattern detection. This model was designed to 
identify cribriform architecture in Gleason pattern 4 PCa, which is associated with adverse 
prognostic features that imply higher risk disease.  Their model demonstrated excellent pattern 
discrimination, with overall performance similar to that of General Pathologists. (10) In another 
study, a similar AI model was employed to detect these cribriform patterns in prostate needle 
biopsies. This model achieved a sensitivity of 0.9, with limited false positives. (11) Despite these 
successes, it is important to note that different AI models vary in their grading accuracy. For 
example, it has been shown that models employing tissue component maps (TCMs) outperform 
those that use raw inputs, particularly when analyzing the most aggressive PCa tissue types (i.e. 
Gleason 5). (12) Models such as the aforementioned demonstrate utility beyond the triage setting 
and showcase their potential to assist pathologists with grading through the detection and 
identification of suspicious architectures.   

Sub-specialized Genito-urinary Pathologists (“GU Pathologists”) represent the gold 
standard in histopathological analysis of PCa. However, not every center has the resources to 
employ these niche and expertly trained professionals. General Pathologists typically serve as the 
backbone in many departments due to their broad knowledge base and clinical flexibility. Some 
groups have suggested that AI technology could serve as excellent adjunct tools to improve the 
diagnostic capability of General Pathologists. (10) For example, Nagpal et al compared the rate 
of diagnostic agreement between a DL system with both General and GU Pathologists. The 
overall rate of agreement, using digital images of prostate tissues samples, was approximately 
95% in the diagnosis of malignancy for all groups. However, the DL system outperformed 
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General Pathologists in the Gleason scoring of malignant specimens. The AI model obtained a 
71.7% rate of agreement with GU Pathologists compared to a 58% rate of agreement for General 
Pathologists. (9)  Bulten et al. developed a similar DL model, which also showed high agreement 
with their reference standard; a data set which had been developed by expert consensus. In fact, 
the DL system performed comparably to Pathologists with more than 15 years of experience and 
managed to outperform those with less than 15 years’ experience. (7) Taken together, these 
findings clearly demonstrate the ability of these models to address gaps in both service and 
experience, with some utility in supporting clinical decisions.  

Despite the increasing demand for Pathology services, there has been a decline in the 
number of practicing Pathologists in recent years. (13)  Given that this phenomenon is complex 
and multifactorial (14), centers may wish to pursue streamlined options that mitigate these 
human resource deficits. Various studies have shown that AI models can performed reasonably 
well, despite the relatively early stage of development. (5-12) However, when it comes to the 
histopathological diagnosis of disease, it is important to recognize that these models are only 
capable of lending some of the expertise of GU Pathologists. Hence, current AI models would 
not be capable of outperforming the diagnostic abilities or substitute for the clinical acumen of 
these highly trained sub-specialists. 

The ability for AI models to learn from previous data and create new outputs is 
unquestionably fascinating. Studies suggest that the implementation of this technology may bring 
novelty and improved accuracy to the diagnosis of PCa by providing standardization in Gleason 
scoring. However, the development of this technology and the performance of rigorous testing 
takes incredible amounts of resources including knowledge, time and money. While this 
technology has the potential to provide practical, clinical and financial value to the resource-rich 
centers that employ them, it may simply be unattainable for resource-challenged institutions and 
jurisdictions.  

Additional concerns have been raised about the generalizability of AI studies, particularly 
when considering the applicability of AI technology to patients at non-academic sites (i.e. 
community hospitals), multinational cohorts or those of minority subgroups. (15) Since most 
studied AI models are developed using data from a single academic center, they risk inherent 
bias from their respective patient population. (16). The recent Prostate cANcer graDe 
Assessment (PANDA) challenge sought to address these limitations as the largest histopathology 
competition to date; the goal was to catalyze the development of reproducible AI algorithms 
using over 10,000 multi-center, multi-national digitized prostate biopsies (16). They validated 
algorithms that achieved an incredible 0.862 κ and 0.868 κ with expert uropathologists, on 
United States and European external validation sets respectively (16). While this finding 
certainly shows promise, AI output for foreign cases, such as histological variants or samples 
with chronic inflammation, is still unknown. Fortunately, it may be possible to mitigate the risk 
of critical predictive errors using an algorithmic audit to identify potential blind spots within an 
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AI model prior to clinical deployment. (17). Beyond multinational competitions and AI auditing, 
continued efforts to establish generalizability such as adequately powered studies (i.e. adequate 
sample sizes) and the adoption of standardized reporting in AI research, using guidelines such as 
the Radiomics Quality Score (18) or STREAM-URO framework (19), should be encouraged. 
Future research could also focus on clinical application, such as the prediction of long-term 
outcomes, in order to demonstrate utility beyond pure pathologic science.  

While AI studies in PCa have been promising, they have not been able to demonstrate the 
superiority of AI models compared to the diagnostic prowess and clinical performance of GU 
Pathologists. Despite the apparent utility of this technology in bridging various gaps associated 
with General Pathology assessment, it is evident that AI models in their current form are not 
“ready for prime time” nor to supplant our GU Pathologists.  For AI technology to be accepted, 
employed and trusted in the field, more research needs to be done to ensure this technology is 
widely cost-effective, scalable, reproducible, generalizable and provides meaningful outputs at a 
level that exceeds the standard of care. Evidently, this is quite a tall order. 
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