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Abstract 
 
Introduction: The anti-PD-1 immune checkpoint inhibitor nivolumab is currently approved 
for the treatment of patients with metastatic renal cell carcinoma (mRCC); approximately 
25% of patients respond. We hypothesized that we could identify a biomarker of response 
using radiomics to train a machine learning classifier to predict nivolumab response 
outcomes. 
Methods: Patients with mRCC of different histologies treated with nivolumab in a single 
institution between 2013 and 2017 were retrospectively identified. Patients were labelled as 
responders (complete response [CR]/particle response [PR]/durable stable disease [SD]) or 
non-responders based on investigator tumor assessment using RECIST 1.1 criteria. For each 
patient, lesions were contoured from pre-treatment and first post-treatment computed 
tomography (CT) scans. This information was used to train a radial basis function support 
vector machine classifier to learn a prediction rule to distinguish responders from non-
responders. The classifier was internally validated by a 10-fold nested cross-validation. 
Results: Thirty-seven patients were identified; 27 (73%) met the inclusion criteria. One 
hundred and four lesions were contoured from these 27 patients. The median patient age was 
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56 years, 78% were male, 89% had clear-cell histology, 89% had prior nephrectomy, and 
89% had prior systemic therapy. There were 19 responders vs. eight non-responders. The 
lesions selected were lymph nodes (60%), lung metastases (23%), and renal/adrenal 
metastases (17%). For the classifier trained on the baseline CT scans, 69% accuracy was 
achieved. For the classifier trained on the first post-treatment CT scans, 66% accuracy was 
achieved. 
Conclusions: The set of radiomic signatures was found to have limited ability to discriminate 
nivolumab responders from non-responders. The use of novel texture features (two-point 
correlation measure, two-point cluster measure, and minimum spanning tree measure) did not 
improve performance.  
 
 
 
Introduction 
Immunotherapies have revolutionized the treatment of metastatic renal cell carcinoma 
(mRCC) and have demonstrated improved overall survival. (1-4) Despite this advance, not all 
patients benefit from immune treatments and to date no predictive biomarker has been 
validated. CheckMate 025 was a landmark randomized phase III trial that assigned patients 
with previously treated mRCC to the programmed cell death protein-1 (PD-1) inhibitor 
nivolumab or everolimus. Patients treated with nivolumab had a statistically significant 
improvement in overall survival of approximately 5 months compared with everolimus. (1) 
However the objective response rate to nivolumab was 25% suggesting that this benefit was 
limited to a small proportion of patients. Furthermore, higher levels of PD-L1 expression did 
not predict for responses. A predictive biomarker would facilitate selection of patients most 
likely to respond to nivolumab and allow those who are not likely to respond to avoid 
immune-related adverse events and reduce the substantial treatment related costs.  

The application of radiomics technology in medical imaging offers a potential 
platform to develop a predictive signature. (5, 6) Radiomics extracts quantitative information 
from routine radiologic images to identify characteristic features that could predict tumor 
biology and immune cell infiltrates. Compared with biopsy-based methods, radiomics affords 
unique advantages: 1) it captures spatial information encompassing the entire tumor and 
microenvironment, thereby accounting for intra-tumoral heterogeneity and tumor-host 
interactions; 2) multiple lesions can be assessed in parallel, thereby accounting for inter-
tumoral heterogeneity; 3) lesions can be assessed longitudinally for changes over time; and 4) 
unlike biopsies, it is a non-invasive method that presents minimal risk to patients. 

The Predictive RadiOMIcs SignaturE for treatment response to nivolumab or PD-
1/PD-L1 inhibitors in patients with advanced renal cell carcinoma (PROMISE) was a pilot 
study that aimed to develop a radiomics signature to predict response to immune checkpoint 
inhibitors in mRCC. We hypothesized that in patients with mRCC, host immune recognition 
of tumor cells would create a microenvironment of infiltrating immune effector cells. The 
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microenvironment could predict for response to nivolumab and would have a distinct 
appearance on computed tomography (CT) images that could be captured using radiomics 
methods and subsequently developed into a predictive signature with clinical utility. 

Methods 

Patient selection 
This single-institution, retrospective study of CT-derived textual features of patients 
diagnosed with mRCC between 2013 and 2017 was reviewed and approved by the local 
institutional ethics board (17-5340). Patients must have had histologically proven mRCC (any 
histology), received nivolumab, and had pre and post-treatment CT scans. Patients were 
excluded if appropriate CT images were not available for analysis.  

Image acquisition 
Contrast-enhanced CT imaging of the thorax, abdomen, pelvis was performed with nonionic 
intravenous contrast. Regions of interest (ROI) were drawn circumferentially around each 
index lesion by a study member (H.W-S and S.P). Each target lesion on CT imaging was 
assessed as a distinct entity, in order to account for inter-tumoral heterogeneity. Responses 
were dichotomized into responders versus non-responders based on RECIST version 1.1 
measurements of the target lesion only. (7) Responders were defined as lesions with complete 
response, partial response, or stable disease for at least 12 weeks. Non-responders were 
defined as lesions with stable disease for less than 12 weeks, or progressive disease. The best 
response was used, such that patients with initial progressive disease, but treated beyond 
progression with subsequent treatment benefit, were regarded as responders. The decision to 
differentiate stable disease at 12 weeks was based on a study of response heterogeneity with 
immune checkpoint inhibitors. (8) 

Radiomics analysis 
Using computational algorithms, quantitative radiomics features were extracted from each 
contoured target lesion. These radiomics features represent the defining quantitative 
characteristics of the lesion. For the algorithms, each image voxel (a value on a regular grid 
in three-dimensional (3D) space) was quantized to a finite range of 32 grey levels. 
Additionally, algorithms initially described for two-dimensional (2D) pictures were adapted 
for 3D volumes, by extrapolating from the 4 principal directions in 2D to the 13 principal 
directions in 3D. (9) 

For each tumor volume of interest (VOI) a set of 11 and 142 1st and 2nd-order, and 
two-point correlation, two-point cluster, and minimum spanning tree texture metrics were 
generated. A set of two-dimensional ROIs was used to construct a VOI that occupied a 
contiguous range of slices and overlapped from one slice to the next. The 1st-order metrics 
were composed of 11 image intensity percentiles from each VOI ranging from the minimum 
value (0%) to the maximum value (100%) broken up into nine 10% intervals. 
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Characterization of the one dimensional image intensity histogram shape was provided by 
these metrics. 

The intensities within each VOI were grouped into 32 equal-sized bins extending 
across the range of image intensities from the 1st percentile at the bottom, and the 99th 
percentile at the top prior to computing the 142 second-order texture metrics. The second 
order texture features were composed of metrics from four classes calculated from 
multidimensional histograms: (i) the mean and range of the 13 Haralick features computed 
from the gray scale co-occurrence matrix (10) taken over all 13 neighbor orientations (9); (ii) 
five features based on the neighborhood gray tone difference matrix (11); (iii) ten features 
from the gray level run-length matrix (12); and (iv) the same ten features from the gray level 
size zone matrix. (13) A detailed, illustrated description of these metrics has been previously 
published. (9) 

Machine learning algorithm 
A support vector machine (SVM) algorithm with a radial basis function (RBF) kernel was 
used to carry out all machine learning. A classifier was trained to predict pre-treatment 
whether advanced renal carcinoma tumors treated with nivolumab would be responders 
(CR/PR/durable SD) or non-responders and distinguish post-treatment between nivolumab 
responding and non-responding tumors, based on the texture features extracted from the 
associated VOIs. The MATLAB interface to the LibSVM (library for support vector 
machines) software library (14) was used to apply the SVM training algorithm to the data, 
consisting of 104 contoured lesions (lymph nodes: 62; lung metastases: 24; kidney or adrenal 
metastases) from 27 patients, in these two configurations. It was necessary to tune three 
hyperparameters governing the behaviour of the classifier for each SVM training run. The 
first hyperparameter was related to feature selection. 191 input texture features were ranked 
in order of their association with the response classification using an F-statistic approach. 
(15) A tunable hyperparameter which represented the fraction of the most highly associated 
features to keep was applied to select the features that were used. The second hyperparameter 
was the standard cost parameter common to all versions of SVM, while the third was the 
width of the Gaussian that makes up the RBF kernel. 

The three hyperparameters were tuned using a nested cross-validation scheme while 
ensuring to keep the assessment of accuracy totally independent. In each of 100 iterations of 
the outer loop, ten-fold cross-validation was used to hold out 10% of the data for testing, 
while the remaining 90% was passed to the inner loop. Within the inner loop, a further ten-
fold cross-validation protocol was employed for each point in a three-dimensional grid 
covering a range of fractions of the best features to retain, values of the SVM cost parameter, 
and values of the RBF width. For each grid point searched the inner-loop cross validation 
result was recorded, the best performing triplet of hyperparameters was utilised to train a 
classifier using all of the inner loop data. This classifier was then applied to classify the held-
out data from the outer loop, and the results were recorded as the s accuracy. 

The pre and post-treatment texture features for each series along with their binary 
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classifications (non-responder: 0; responder: 1) were separately inputted into the second stage 
supervised machine learning (SML) RBF SVM classifier to train binary discrimination 
between the responders and non-responders. A nested 10-fold cross-validation protocol was 
used to assess classifier accuracy. The second stage SML algorithms used were also “as is”, 
the same as were used for previous projects. The SVM algorithms generate a cross-validation 
(CV) accuracy value for each combination of three metaparameters: fraction, cost, and 
gamma, yielding a 3-dimensional CV accuracy space. The optimization target was to find the 
region of the parameter space yielding the highest cross-validation accuracy. 

Receiver operating characteristic (ROC) and other post-hoc analyses 
A SVM classifier produces a single, continuous number on the real line rather than a 
dichotomous binary classification as its output. The SVM classifier is only transformed into a 
classification when a threshold is applied to it. As a result it is possible to adjust the threshold 
to adjust sensitivity and specificity, thereby creating a ROC curve. Repeating the outer loop 
of the nested cross-validation protocol 100 times yields 100 such numbers for each tumor, 
this results in a more fine-grained ROC curve than would be possible without repetitions. 
Each of the 100 numbers for a particular tumor represents an instance in which it was held 
out during cross-validation with a different 10% of the data, allowing for a more robust 
characterization of the accuracy for that case. In the results section below, the mean ± SD 
accuracies reported are the best from each of the 100 ROC curves, and the sensitivities and 
specificities are taken from the point on each curve where the best accuracy was found. By 
combining all the trial data into a single curve the ROC curves presented in the figures are 
generated.  

Statistical analysis 
Descriptive statistics were used to summarize baseline demographics. Survival estimates 
were computed using the Kaplan-Meier (KM) method. The accuracy of the predictive 
signature from the SVM classifier was determined by 10-fold nested cross-validation, and 
reported in terms of sensitivity, specificity and AUC. An AUC of 0.5 would signify no 
discriminatory ability, 0.7-0.8 represents an acceptable level, 0.8-0.9 represents a good level 
of discrimination and 0.9-1.0 would be excellent. Statistical significance was determined by 
permutation testing. (16) For permutation testing, the observed accuracy was compared 
against the distribution of accuracies obtained by random noise, generated by randomly 
labelling the radiomics signatures as being responders or non-responders using 10,000 
permutations. Significance level was set at 0.05. 

Results 

Patients 
Thirty-seven patients were identified between August 21, 2013 and October 6, 2017. Only 27 
patients met the inclusion criteria with available imaging. Ten patients were excluded as 
imaging was either not available (n=3) or the imaging protocol used was incompatible with 
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the radiomics software (n=7). A final cohort of 27 patients were used for analysis. The 
median patient age was 56 years, 78% were male, 89% had clear cell histology, 89% had 
prior nephrectomy and 89% had prior systemic therapy. The selected patients were 
categorized as being in the good (30%), intermediate (60%) or poor (10%) risk groups as per 
the International Metastatic RCC Database Consortium (IMDC) scoring system. (17) The 
lesions selected were lymph nodes (60%), lung metastases (23%) and renal/adrenal 
metastases (17%). The characteristics of the patient population and ROIs are listed in Table 1. 

The median progression and overall survival for the entire population was 10.8 
months (range [1.4-48.8 months]) (Figure 1a) and 26.2 months (range [3.1-72.5 months]) 
(Figure 1b), respectively. For the responders and non-responders the median Progression-
Free Survival (PFS) and Overall Survival (OS) was 14 months (range [3.5-48.8 months]) 
(Figure 2a) vs 3.7 months (range [1.4-13.2]) (Figure 2b) (p-value < 0.0001), and 28.8 months 
(range [3.7-72.5 months]) (Figure 3a) vs 16.3 months (range [3.1-40.8 months]) (Figure 3b) 
(p-value 0.13), respectively.  

The final data set of 27 subjects with pre-treatment and immune checkpoint inhibitor 
post-treatment yielded 52 responding lesions and 52 non-responding lesions that were 
analyzed using a SML radiomics application pipeline that has been previously validated.  

Performance of radiomics signature 
Lesion VOI contours were extracted using validated Neuroimaging Informatics Technology 
Initiative (NIfTI) software libraries. Each series consisted of a specific subject and set of 
lesion VOIs which were examined using the radiomics analysis software image display to 
confirm that: 1) the VOI contours were successfully extracted from the NIfTI files and 2) 
their positions matched those of a lesion. No issues were found with the data set and it was 
found to be suitable for radiomics texture analysis. The PROMISE contour bounded data 
were batch processed by the first stage of the radiomics application to generate the set of 
texture features to be used by the second stage radiomics SML application.  

Supervised machine learning 
The exhaustive iterative grid over the region of highest cross-validation accuracy in the 3D 
space yielded a set of ROC curves as represented in Figures 4a and 4b for the pre-treatment 
and post-treatment groups respectively. For the classifier trained on the baseline CT scans, 
69% accuracy was achieved. For the classifier trained on the first post-treatment CT scans, 
66% accuracy was achieved. The pre-specified level of sensitivity and specificity that was 
required for the analysis to be successful was 85%; on this basis, the pre and post-treatment 
ROC curves do not demonstrate sufficient discriminatory ability to warrant further study.  

Discussion 
In patients with mRCC treated with Immune Checkpoint Inhibitors (ICI) we were not able to 
derive a radiomics signature that could predict for response or resistance to ICI. The pre and 
post-treatment ROC curves are negative results for the radiomics analysis of the PROMISE 
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data set. The current “as is” supervised machine learning set of algorithms were not able to 
discriminate significantly better than a binary classifier for a response in a malignant lesion. 
A reason for this might be that the user-defined texture features cannot significantly 
discriminate between ICI responder and non-responder classifications. 

The patient population in this analysis was representative of the typical mRCC patient 
cohort that would be treated with ICI. The lesions contoured included lymph nodes, lung 
metastases and renal metastases, which are typical of the metastases seen in this patient 
cohort. The OS in the responders were similar to what has been reported in the Checkmate-
025 study. However, the PFS was much longer in the PROMISE responders compared to the 
Checkmate-025 cohort, which could be because without formal tumor measurements 
physicians were more likely to continue patients beyond progression or at least call 
progression of disease later in the patients’ treatment course.  

There are certain limitations to the use of radiomics in general. For example the 
textures that are sensitive to acquisition modes and reconstruction parameters are not 
recommended for radiomics applications such as malignant and benign tissue differentiation. 
(18)  Accurate delineation of tumor volumes is crucial for the computation of radiomic 
features, doing this manually is time-consuming and subject to inter-observer variability. 
Numerous studies have recommended automatic and semiautomatic methods of tumor 
volume delineation over manual contouring. (19, 20) We tried to account for this by having 2 
investigators define the VOI, however this approach may still have had inherent inaccuracies 
that could have been resolved by an automated process. Although tumor heterogeneity can 
potentially be quantified using radiomics features extracted from medical imaging, many 
features are unstable between imaging scans which would mean that a large number of 
features may be unreliable. (21, 22) Datasets need to consist of 10-15 patients per feature to 
reduce the false discovery rate necessitating the use of larger datasets. (23) Optimal cut-off 
values of radiomic features are often used to stratify patients into two risk groups for KM 
survival analysis, however searching for the optimal cutoff values through testing multiple 
thresholds can increase the likelihood of obtaining statistically significant but spurious 
results. As the optimum cut-off value can vary in different datasets, single study results may 
not be reproducible in other patient populations. Independent validation datasets are required 
to confirm the prognostic value of the same radiomics features to avoid false positive results. 
(24, 25) 

Recent studies have confirmed the utility of radiomics across numerous cancer types 
(lung cancer (25-32); head and neck cancer (25, 27, 33, 34); glioblastoma (35-38); 
esophageal cancer (9, 39-41); rectal cancer (42); hepatocellular carcinoma (43); prostate 
cancer (44); RCC (45); soft tissue sarcoma (46); and germ cell tumors (47)) using various 
imaging modalities. In one study, radiomics features for predicting the survival of patients 
with lung cancer were found to be distinct from those for head and neck cancer, highlighting 
the need to develop tumor-specific signatures. (27) In general, most studies have explored 
correlates of survival, gene expression or molecular pathway aberrations. Several studies 
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investigated predictive signatures for pathological response to neoadjuvant 
chemoradiotherapy. (9, 19, 29, 39-42) At this stage, the role of radiomics is still emerging, 
and radiomics has not been integrated into clinical practice as signatures have not yet been 
independently validated and the complexity of deriving the signature may make it difficult to 
implement outside of centres that do not have the computational algorithms to calculate such 
signatures. 

The current study does have some important limitations. It is a retrospective, single 
institution analysis which used a selected patient sample without an external validation 
cohort. The sample size was small in this pilot study because of the time required for manual 
contouring of primary kidney lesions and metastatic lesions from different sites. A larger 
sample size would have been prohibitive without automation. We do not know if adding 
further patients would potentially change the results seen. Radiomics is a technically 
challenging and time-consuming approach and so is unlikely to be usable outside larger 
tertiary cancer centres without improvements in automated contouring of ROIs.  

The study of radiomics could be continued in mRCC as new methods become 
available such as additional novel texture feature measures added to the existing standard set 
which may improve discriminating capability between the ICI non-responder and responder 
classifications. Furthermore, radiomics in mRCC requires substantially more data with a 
higher number of patients for the analysis to have a greater chance of success. The use of 
more advanced supervised machine learning techniques such as convolutional neural 
networks, which learn high-level features, is required. Unsupervised deep learning, 
automated volume delineation or variational auto-encoders which would sort the images into 
different regions of low-dimensional space based on intrinsic image properties are possible 
technological innovations that may enhance the development of a radiomics signature for 
mRCC. If these advances can be integrated into such an analysis, then a radiomics signature 
for mRCC patients treated with immunotherapy may be more feasible. 
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Figures and Tables 
 
Fig. 1A. Kaplan Meier-curve of the progression-free survival (PFS) for the whole study 

population. Median PFS 10.8 months (range 1.4–48.8). 

 
 
Fig. 1B. Kaplan-Meier curve of the overall survival (OS) for the whole study population. 

Median OS 26.2 months (range 3.1–72.5). 
 

 
 
Fig. 2A. Kaplan-Meier curve of progression-free survival (PFS) for responders. Median PFS 

was 14 months (range 3.5–48.8 months). 
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Fig. 2B. Kaplan-Meier curve of progression-free survival (PFS) for non-responders. Median 

PFS vs. 3.7 months (range 1.4–13.2). 
 

 
 
Fig. 3A. Kaplan-Meier curve of overall survival (OS) for responders. Median OS was 28.8 

(range 3.7–72.5). 
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Fig. 3B. Kaplan-Meier curve for overall survival (OS) for non-responders. Median OS was 

16.3 months (range 3.1–40.8). 

 
 
Fig. 4A. Pre-treatment. Specificity corresponds to the proportion of non-responding lesions 
classified correctly. Sensitivity corresponds to the proportion of responding lesions classified 
correctly. 

 
 
Fig. 4B. Post-treatment. Specificity corresponds to the proportion of non-responding lesions 
classified correctly. Sensitivity corresponds to the proportion of responding lesions classified 
correctly. 
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Table 1. Characters of the patients and ROIs 
Patients identified: 37  
 Included in study 27 (73) 
 Excluded: Imaging unavailable 3 (8) 
 Excluded: Incompatible CT protocols 7 (19) 
  
Age in years: median (range) 56 (37–68) 
Gender Male 21 (78) 
 Female 6 (22) 
Nivolumab response Responders 19 (70) 
 Non-responders 8 (30) 
Tumor histology Clear-cell 24 (89) 
 Non-clear-cell 3 (11) 
Prior nephrectomy Yes 24 (89) 
 No 3 (11) 
Prior systemic therapy Yes 24 (89) 
 No 3 (11) 
Lines of therapy 0 3 
 1 14 
 2 4 
 3 3 
 ≥4 3 
Prior treatment Sunitinib 22 
 Everolimus 8 
 Axitinib 4 
 Pazopanib 2 
 Phase 1 trials 7 
IMDC risk score Good 8 (30) 
 Intermediate 16 (60) 
 Poor 3 (10) 
Lesions contoured: 104  
 Lymph nodes 62 (60) 
 Lung metastases 24 (23) 
 Kidney or adrenal metastases 18 (17) 

 
 


