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Abstract 
 
Introduction: Neoadjuvant chemotherapy (NAC) for muscle-invasive bladder cancer (MIBC) 
improves overall survival, but pathological response rates are low. Predictive biomarkers could 
select those patients most likely to benefit from NAC. Radiomics technology offers a novel, non-
invasive method to identify predictive biomarkers. Our study aimed to develop a predictive 
radiomics signature for response to NAC in MIBC. 
Methods: An institutional bladder cancer database was used to identify MIBC patients who were 
treated with NAC followed by radical cystectomy. Patients were classified into responders and 
non-responders based on pathological response. Bladder lesions on computed tomography 
images taken prior to NAC were contoured. Extracted radiomics features were used train a radial 
basis function support vector machine classifier to learn a prediction rule to distinguish 
responders from non-responders. The discriminative accuracy of the classifier was then tested 
using a nested 10-fold cross-validation protocol.  
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Results: Nineteen patients who underwent NAC followed by radical cystectomy were found to 
be eligible for analysis. Of these, nine (48%) patients were classified as responders and 10 (52%) 
as non-responders. Nineteen bladder lesions were contoured. The sensitivity, specificity and 
discriminative accuracy were 52.9±9.4%, 69.4±8.6%, and 62.1±6.1%, respectively. This 
corresponded to an area under the curve of 0.63±0.08 (p=0.20).  
Conclusions: Our developed radiomics signature demonstrated modest discriminative accuracy; 
however, these results may have been influenced by small sample size and heterogeneity in 
image acquisition. Future research using novel methods for computer-based image analysis on a 
larger cohort of patients is warranted.  
 
 
 
Introduction 
Neoadjuvant chemotherapy (NAC) prior to radical cystectomy (RC) in muscle-invasive bladder 
cancer (MIBC) has led to an improvement in 5-year overall survival (OS) rates by 5% as 
compared to RC alone, with preferential benefit for patients who achieve a pathological response 
(i.e. <ypT1). 1-4 However, the majority of patients fail to respond to NAC with evidence of 
muscle-invasive disease at the time of cystectomy. 3 This low response rate, coupled with the 
significant risk of toxicities with recommended cisplatin-based chemotherapy regimens, raises 
concerns about the risk-benefit ratio of utilizing NAC in patients with MIBC particularly in 
patients who are older and have co-morbidities. 5,6 Accordingly, predictive biomarkers are 
critical to identify patients who will respond to NAC in order to limit potential toxicities from 
cytotoxic chemotherapy in patients who are unlikely to derive benefit.  

Radiomics technology offers a promising method to identify predictive and prognostic 
biomarkers by extracting quantitative information from radiological imaging to describe tumor 
biology. 7,8 As the analysis is not limited to the biopsied sample, radiomics analysis can assess 
for intra-tumoral heterogeneity, as well as the tumour microenvironment. 9 Furthermore, as a 
non-invasive method it provides negligible risk to the patient and can be easily utilized to assess 
for tumour response to therapy over time. The potential opportunity of radiomics technology as a 
predictive biomarker has been demonstrated across multiple solid tumor malignancies (i.e. head 
and neck, lung, esophageal, rectal and testicular cancer), highlighting its potential as a predictive 
biomarker in MIBC. 9-14 

The Radiomic signature in predicting rEsponse to neoadjuVAnt chemotherapy in muscle 
invasive bLadder cancer (REVeAL) study was thus conducted to develop and evaluate a 
radiomics signature that can predict the likelihood of response to NAC based on pre-treatment 
computed tomography (CT) for patients treated for MIBC at a single institution.  

 
 

Methods 
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Cohort creation 
All patients diagnosed with MIBC between January 1, 2001 and December 31, 2016 were 
identified from a retrospective review of the University Health Network Bladder Cancer database 
following institutional ethics approval. Eligible patients for inclusion included adult patients 
(age > 18 years) with biopsy proven urothelial carcinoma (squamous cell histology was 
excluded) who received NAC with cisplatin-based treatment. Patients were excluded if there 
were no computed tomography (CT) images prior to initiation of NAC and if there was no 
surgical pathology available from cystectomy. This cohort was divided into two sub-groups 
based on pathological response at the time of cystectomy: responders (i.e. pathological tumor (T) 
stage of <ypT1) and non-responders (i.e. >ypT1). 

For all eligible patients, the following clinical data were extracted: a) patient 
demographics (i.e. age, sex), disease characteristics (i.e. TNM stage), details of neoadjuvant 
chemotherapy (including chemotherapy regimen, number of cycles completed), pathological 
response at time of cystectomy and clinical outcomes (i.e. recurrence and survival).  

Radiomics analysis 
Radiological contouring of the primary bladder tumour was performed manually on the pre-
treatment CT images by two reviewers in tandem (AP, AQ) using 3D Slicer software (3D Slicer 
version 4.10.2, available at: https://www.slicer.org/). A third investigator (AH) was available to 
adjudicate any disagreements. The region of interest (ROI) for image contouring was restricted 
to the primary bladder tumor, with exclusion of regional lymph nodes. 
 Quantitative radiomic features from the primary bladder lesion were extracted using 
computational algorithms. Each image voxel was quantized from a grey level continuum to a 
finite range of 32 grey levels. Each algorithm was initially described for two-dimensional (2D) 
pictures and then adapted for three-dimensional (3D) volumes by extrapolating from the 4 
principal directions in 2D to the 13 principal directions in 3D to generate a volume of interest 
(VOI). 9 The radiomic features were then computed in a step-wise fashion. First-order metrics 
specific to lesion intensity (i.e. the brightness or darkness of the imaging voxels) were computed 
from each VOI and classified into 11 percentiles, ranging from 0% to 100%. The intensities from 
each VOI were then divided into 32 equal sized bins that spanned the range of image intensities 
between the 1st and 99th percentiles (percentiles chosen to minimize effect of outliers) prior to 
computing the 142 second-order texture metrics. The second-order texture analysis was based 
upon 4 classes of texture matrices that are well described in the literature: a) 13 Haralick features 
from the gray level co-occurrence matrix; b) 5 features from the neighborhood gray tone 
difference matrix; c) 10 features from the gray level run length matrix; and d) 10 features from 
the  gray level size zone matrix. 15-18 Integration of these 142 radiomics features was used to 
characterize the radiomics signature for responders and non-responders.  

Machine learning 
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Each radiomics signature was defined as a responder or non-responder using the final 
pathological response. This information was used to train a radial basis function (RBF) support 
vector machine (SVM) classifier to learn a prediction rule to distinguish responders from non-
responders. 19,20 In this regard, the SVM functioned as a learning model to optimally separate 
points within a feature space into responders versus non-responders. In the setting of ambiguity, 
the RBF kernel was used to map the initial feature space into a higher dimensional feature space 
where they ultimately become linearly separable.  

In stage 1, cross validation was used to test and optimize the SVM classifier using a 10-
fold nested cross-validation. This approach used the same data for training and testing but in 
separate iterations. Nested validation allows for two loops to be performed in parallel: an inner 
loop (hyper-parameter tuning) which finds the optimal combination of classifier settings and the 
outer loop which tests the accuracy of the classifier. 21 The hyper-parameters were manually set 
and included: 1) feature selection (fraction of the most highly associated features to retain for the 
prediction rule), 2) cost hyperparameter (determines the trade-off for outliers) and, 3) scale 
hyperparameter (determines the smoothness of the decision surface). 22 For each of the 100 
iterations of the outer loop, ten-fold cross-validation was used with 90% of the data used in the 
inner loop and 10% of the data for testing. Within the inner loop, ten-fold cross-validation 
protocol was employed for each point in a 3D grid covering a range of fractions of the best 
features to retain (feature selection), values of the cost parameter and values of the scale 
parameter. For each grid point searched, the inner-loop cross validation result was recorded and 
then the best-performing triple of hyperparameters was utilised to train a classifier using all of 
the inner loop data. This classifier was then applied to the 10% data held for testing, and the 
results recorded as the accuracy.  

In stage 2, the texture features, as per the binary classification by response, were inputted 
into the supervised machine learning (SML) RBF SVM classifier to train for the discrimination 
between the responders and non-responders. The accuracy of the classifier was then tested using 
a nested 10-fold cross-validation protocol.  

Outcome measure 
Description of the accuracy of the final predictive radiomics signature from the SVM classifier 
was reported by its sensitivity, specificity, area under receiver operator curve (AUC) and 
statistical significance.  

Statistical analysis 
Descriptive statistics (mean, median, counts and proportions) were used to summarize the 
clinical characteristics of the included cohort. All data was analyzed descriptively with 
proportions for categorical data, or medians and interquartile ranges (IQR) for continuous data. 
The two patient groups were compared with the use of Pearson’s Chi-squared test for all 
categorical data. Continuous data was compared with a one-way analysis of variance. Data for 
time dependent variables were reported as medians with 95% confidence intervals (CI). The 
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Kaplan-Meier method was used to estimate relapse-free survival (RFS) and OS, with 
corresponding 95% CI. RFS was defined as the time from pathological diagnosis to date of first 
local or regional recurrence, death, or censored at the date of last follow-up. OS was defined as 
the time from pathological diagnosis to date of death or censored at the date of last follow-up. 
Log-rank statistics were used to compare RFS between responders and non-responders. 
Statistical significance for the predictive accuracy of the radiomics signature from the SVM 
classifier was determined by permutation testing, at a significance level of 5 percent.  

Results 

Study cohort 
Thirty-two patients with MIBC who underwent NAC were identified. Of these 8 patients were 
excluded due to lack of available pre-treatment CT images, 4 due to an inability to localize 
bladder tumor and 1 due to imaging artifact, leaving 19 patients eligible for further analysis. Of 
these, 9 (48%) patients were classified as responders and 10 (52%) as non-responders based on 
their pathology at the time of cystectomy. Table 1 summarizes the clinical characteristics and 
outcomes of the included cohort. The majority of patients had their pre-treatment CT imaging 
following pathological sampling (n=13; 68%) with a median time from pathological diagnosis to 
CT imaging of 43 days (95% CI: 20 – 106). Four patients (21%) had CT imaging prior to 
pathological sampling and for 2 patients (11%) the date of pathological sampling is unknown. 
The median time from pre-treatment CT imaging to cystectomy was 157 days (95% CI: 128 – 
235). 
 The median RFS for responders and non-responders was 51 months (95% CI: 28 – not 
reached) and 24 months (95% CI: 20 – not reached, p=0.28), respectively. (Figure 1) Median OS 
for the study cohort was not reached.  
 Among the included study cohort, a total of 19 bladder lesions, in 19 patients were 
analyzed. The majority of bladder tumors were visualized on contrast-enhanced CT scans (n=18; 
95%) in the delayed (n=13; 72%) or venous (n=5; 28%) phase. CT images were acquired with 3 
mm slice thickness for all but one patient (n=18; 95%). All but one included patient had a 
solitary bladder lesion that was included for image analysis. One patient in the non-responding 
sub-group was found to have multi-focal lesions, all of which were included as one lesion in the 
ROI. Image analysis was restricted to the bladder lesion only. Thus, for the three patients 
identified to have node-positive disease, nodal disease was not included in the ROI. The 
anatomical location of the lesions across the cohort were found to be posterior-lateral (right: 7 
(37%), left: 3 (16%)), anterior-lateral (right: 4 (21%), left: 1 (5%)), 2 left-lateral (11%), 1 
posterior (5%), 1 multi-focal (5%). Median time from CT imaging to initiation of NAC for the 
cohort was 24 days (95% CI: 10-43 days).  
  

Radiomics analysis 
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Neuroimaging Informatics Technology Initiative (NIfTI) software libraries were used to extract 
lesion VOI contours. Series of lesion VOI that were specific to a subject were examined using 
the radiomics analysis software to confirm successful extraction of VOI contours from the NIfTI 
files and to confirm their positions matched those of a bladder lesion. The data set was found to 
be suitable for radiomics analysis. Batch processing of the total ReVEAL data generated the set 
of texture features that were then used by the second stage radiomics SML application.  

Machine learning 
The receiver-operator characteristic (ROC) curve, based upon the iterative grid over the region of 
highest cross-validation accuracy, is represented in Figure 2. The mean discriminative accuracy 
of the radiomics signature from the SVM classifier was found to be 62.1 +/- 6.1%. The  
sensitivity and specificity of the radiomics signature was found to be 52.9 +/- 9.4% and 69.4 +/- 
8.6%, respectively. This corresponded to an AUC of 0.63 +/- 0.08 (p=0.20).  

Discussion 
The ReVEAL study aimed to develop a predictive radiomics signature to identify patients with 
MIBC who were likely to respond to NAC. To our knowledge, this is the first evaluation of a 
predictive radiomics signature in MIBC developed on pre-treatment CT images that 
benchmarked response as per pathological assessment. Our study demonstrated the feasibility of 
extracting radiomic features from pre-treatment CT imaging in MIBC for the development of a 
predictive radiomics signature. The discriminative accuracy of our predictive radiomics signature 
was modest at 62%.   
 In the absence of contraindications, clinical practice guidelines recommend the use of 
NAC with cisplatin-based chemotherapy for patients with MIBC given data supporting a survival 
benefit, as compared to cystectomy alone. 2,23 Despite this, utilization is low with population-
level studies reporting less than 20% of patients with MIBC receive NAC. 1,24 Due to the 
advanced age, and high rate of co-morbid conditions among patients with MIBC, it is postulated 
the low use of the NAC may be due to concerns for the risk of toxicities, coupled with an 
expected low benefit. 5,6 As there is a preferential survival benefit from NAC seen among 
patients who achieve a pathological complete response, foregoing NAC may be appropriate in 
the 40-50% of patients who ultimately fail to receive benefit. 3,25 However, with current evidence 
demonstrating the disproportionately low rates of NAC use, it is evident that there is likely a 
substantial proportion of patients in which curative treatment is underutilized. As such, there is a 
critical need for predictive biomarkers to allow for better precision in treatment decision-making.  
 Molecular profiling has been investigated for its use as a predictive biomarker for 
response to NAC. In particular, alterations in the DNA repair pathways have demonstrated 
potential in this regard, with loss of function alterations in ATM, RB1, FANCC, ERCC2 and 
BRCA1 being shown to predict pathological response and improvements in survival. 26-29 Indeed, 
these genomic observations are consistent with the genotoxic mechanism of action of cisplatin, 
which is the backbone of NAC regimens. Molecular sub-typing based upon gene expression 
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profiling has also generated enthusiasm for predicting response to NAC. 30-33 Although early 
reports have demonstrated preferential response to NAC across the different molecular sub-
types, they have not yet been validated as a predictive biomarker and would be challenging to 
integrate in routine clinical care for multiple reasons. Molecular subtyping may require 
additional tissue acquisition by cystoscopy with risk-associated biopsies, which are subject to 
sampling errors; and the technology and expertise required to perform such analyses are usually 
restricted to research focused academic laboratories.  

There has been a growing interest in the application of radiomics technology in oncology 
over the past decade. The early success of computer-based image analysis for clinical prediction 
has been established across a range of solid tumor malignancies. For instance, image analysis to 
predict histology and to identify occult metastases, such as in regional lymph nodes, has shown 
early signs of promise. 34,35 In addition, there is data supporting the use of this technology as a 
predictive biomarker in breast cancer, esophageal carcinoma, germ-cell tumors, nasopharyngeal 
carcinoma and rectal cancer, with discriminative accuracies greater than 70%. 9,10,14,36-38 To date, 
computer-based image analysis has not been shown to out-perform validated clinical prediction 
tools, in settings whereby such tools exist; however, their combination with clinical predictors 
have been shown to improve discriminative accuracy. 36 The utility of this technology in these 
early applications underscore the need for further study, particularly in settings where clinical 
predictors alone are ineffective. 
 Radiomics technology has the potential to serve as a much needed predictive biomarker 
for NAC in MIBC. As there is no pathological assessment required, the need for additional 
invasive procedures is avoided thereby minimizing risks to patients and also reducing healthcare 
resource utilization. Similarly, as patients routinely undergo radiological imaging prior to their 
treatment, no additional diagnostic imaging is required. As conducted through computer-based 
image analysis, the need for additional healthcare personnel to facilitate this predictive 
biomarker is greatly reduced. Consequently, the use of radiomics technology in this context 
promotes the most efficient use of our healthcare resources.  
 The use of radiomics technology as a predictive biomarker has been previously evaluated 
in MIBC. 39,40 Cha et al evaluated the prediction accuracy of a radiomics signature on NAC 
treatment response as assessed by pre- and post-treatment CT images, with response classified as 
T0 tumor on post-treatment imaging. With over 80 patients in each of their training and 
validation cohorts, they demonstrated their radiomic signature to have an AUC of 0.69. 40 In a 
later study, Cha et al evaluated a computerized-based decision-support system for treatment 
response that used a combination of both deep-learning neural networks and radiomic technology 
among 123 patients with response to NAC assessed by post-treatment CT imaging. In this 
analysis, the authors reported an AUC of 0.80, which outperformed clinician visual assessment 
alone (AUC 0.74). 39 Although these two studies demonstrate the promise of radiomics to predict 
response to NAC, the use of post-treatment CT images as a surrogate for pathological response 
was an important limitation, as radiological response rate does not always correlate with 
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pathological outcomes. 41 Unlike these prior studies in MIBC, the REVeAL study benchmarked 
response to treatment as per pathological assessment.  
 Our study is not without its limitations. Our radiomics signature was developed on a 
small pilot cohort of patients from a single institution, which is among the smaller sample sizes 
of radiomics analysis in the published literature.39-41 This small sample size limits the ability to 
make any conclusions on the utility of radiomics analysis as predictive biomarker for response to 
NAC in MIBC. The retrospective design of this study led to variations in the images used in the 
analysis. For instance, not all images were obtained with intravenous contrast with additional 
variations in the CT scanners and imaging protocols that introduced differences with respect to 
image resolution. Further, heterogeneity in the distensions of the bladder lesions could have 
introduced uncontrollable variation in the image analysis. In addition, the retrospective nature of 
this study also introduced the potential for time variation as time of imaging prior to NAC was 
variable. Furthermore, the small sample size necessitated the use of a cross-validation approach, 
as opposed to independent validation on a separate cohort of patients. However, this approach is 
established in the machine learning literature.42 Finally, the current study lacks a comparative 
analysis to address how the radiomics signature performs as compared with, or to complement, 
clinician prediction and/or molecular profiles.  
 Although the utility of our radiomics signature was limited, this represents a starting 
point for further evaluation of radiomics in MIBC. As the field of radiomics rapidly evolves, 
there is opportunity to introduce novel methods to improve the performance of the radiomics 
signature. This may include the use of more advanced supervised machine learning such as with 
convolutional neural networks that learn predictive features in a more automated fashion and 
have been shown to improve diagnostic accuracy. 43 In addition, methods such as unsupervised 
deep learning, automated volume delineation or variational auto-encoders that allow for 
automated image analysis will allow for image analysis across a larger cohort of patients leading 
to data that more confidently could inform treatment decision-making in MIBC.  

Conclusions 
Through the ReVEAL study, we demonstrated the feasibility of developing a predictive 
radiomics signature to discriminate response to NAC for patients with MIBC that demonstrated 
modest accuracy. Future research using novel methods for computer-based image analysis on a 
larger cohort of patients is planned to improve the utility of radiomics as a predictive biomarker 
in MIBC.  
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Figures and Tables  
 
Fig. 1. Relapse-free survival for included cohort by subgroup.  
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Fig. 2. Receiver operating characteristic curve for radiomic classifier for discriminating 
responders from non-responders on pre-treatment computed tomography images.  
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Table 1. Characteristics and outcomes of included patients 
Characteristic Responder 

(n=9) 
Non-responder 

(n=10) 
p 

Age, years; median (IQR) 68 (62–73) 66 (59–69) 0.88 
Male sex (%) 8 (89) 6 (60) 0.36
Clinical nodal status1 (%) 
    0   
    1   

 
8 (89) 
1 (11)

 
8 (80) 
2 (20)

1 

Neoadjuvant chemotherapy 
    GC (%) 
       Cycles, median (range) 
    MVAC (%) 
       Cycles, median (range) 

 
8 (89) 
4 (2–6) 
1 (11) 

4 

 
10 (100) 
4 (2–4) 

0 
–

0.962 
 
 

Pathological stage (%) 
   Tumor stage     
       T0 
       Ta 
       T1 
       T2 
       T3 
       T4 
    Nodal stage 
       N0 
       N1  
       N2 

 
 

7 (78) 
1 (11) 
1 (11) 

0 
0 
0 
 

9 (100) 
0 
0

 
 
0 
0 
0 

5 (50) 
3 (30) 
2 (20) 

 
7 (70) 
2 (20) 
1 (10)

 
<0.05 

 
 
 
 
 
 

0.20 
 

Outcomes (%) 
    Distant recurrence 

 
3 (33)

 
6 (60)

 
0.48

Aside from the expected difference in pathological stage, no statistically significant differences 
were noted between the two groups. 1Nodal status was determined on pre-treatment computed 
tomography imaging completed prior to neoadjuvant chemotherapy. 2Statistical testing 
completed on proportion of patients who received each chemotherapy regimen. 
GC: gemcitabine-cisplatin; IQR: interquartile range; MVAC: methotrexate-vinblastine-
doxorubicin-cisplatin. 
 


