Ureteral strictures post-kidney transplantation: Trends, impact on patient outcomes, and clinical management

Michelle Minkovich1; Olusegun Famure1; Yanhong Li1; Anand Ghanekar1,2,3; Markus Selzner1,2; S. Joseph Kim*1,4; Jason Y. Lee*1,3

1Ajmera Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON, Canada; 2Division of General Surgery, University Health Network, Toronto, ON, Canada; 3Department of Surgery, Division of Urology, University Health Network, University of Toronto, Toronto, ON, Canada; 4Department of Medicine, Division of Nephrology, University Health Network, University of Toronto, Toronto, ON, Canada

*These authors co-directed this work

Published online March 18, 2021

Abstract

Introduction: Ureteral strictures post-kidney transplantation (KT) can be a significant morbidity to the patient, often requiring surgical intervention and impacting graft function. We sought to investigate the incidence, clinical management, and outcomes of ureteral strictures among kidney transplant recipients (KTRs) at a large, multi-organ transplant center.

Methods: We conducted a single-center cohort study looking at KTRs who had transplant surgery from January 1, 2005 to March 31, 2017 with at least one-year followup (n=1742). Any KTRs done outside of our center or simultaneous multiorgan transplants were excluded. The Kaplan-Meier product-limit method was used to determine the incidence of ureteral strictures. Risk factors for ureteric strictures and clinical outcomes among patients with vs. without ureteric strictures were analyzed using Cox proportional hazards models.

Results: The incidence of ureteral strictures was 1.31 (95% confidence interval [CI] 0.85, 2.01) per 100 person-years or a cumulative incidence of 1.2%. We did not find any donor or recipient demographic variables that were independently associated with an increased risk of ureteral stricture development. A large proportion was managed successfully with radiologic intervention alone (47.6%). Ureteral strictures were associated with death-censored graft failure (hazard ratio [HR] 7.17, 95% CI 2.81, 18.30), total graft failure (HR 3.04, 95% CI 1.41, 6.59), and hospital readmission (HR 2.52, 95% CI 1.58, 4.00).
Conclusions: Although uncommon, ureteral strictures can significantly impact patient outcomes after KT. A better understanding of risk factors and clinical management will be important to ensure optimal graft outcomes.

Introduction
Kidney transplantation (KT) is the treatment of choice for most patients with end-stage renal disease (ESRD), providing improved quality of life and increased life expectancy for most patients. Nevertheless, KT is a complex surgical procedure associated with post-operative complications that can reduce the intended benefits. Urological complications, such as obstruction and urine leaks typically range in incidence from 3.4% to 10% with some studies reporting an incidence as high as 14 to 20%. Aside from urinary tract infections, ureteral strictures are the most common urological complication following KT. Reported incidences range from 0.5 to 6.8% and the majority of cases occur within three months post KT. Early cases are thought to be related to surgical technique of KT or ischemic fibrosis, whereas later cases are attributed to ureteral fibrosis or compression by the surrounding fibrotic tissue.

Some reported risk factors for ureteral strictures include older donor age (> 65 years), recipient male sex, kidneys with more than 2 arteries, delayed graft function, prolonged cold ischemia, fluid collections around the ureter, and BK virus infections. There is disagreement regarding the role of surgical technique as a risk factor, with some studies reporting a link, while others do not, and this may be related to whether a refluxing or non-refluxing anastomosis technique is utilized.

There is also a lack of consensus regarding the best clinical management for these complications. Some studies report immediate open surgical repair (surgical reimplantation of the ureter) as the gold standard and optimal first line of treatment, whereas other cohorts benefited more from minimally invasive treatments, such as percutaneous nephrostomy (PN) with balloon dilation. Yet others report no significant differences in the success or negative outcomes between the two types of interventions, calling for a case-by-case approach. Success rates of radiologic interventions and surgical interventions seem to be comparable at 71 to 86% and 80%, respectively. For ureteral strictures occurring after the first 3 months of KT, however, some studies show a reduced long-term success rate of radiologic interventions - as low as 29% to 50%. A recent systematic review revealed success rates of 85.4% for open surgery, and 64.3% for radiologic interventions, as primary treatments. Among secondary treatments, open surgeries had a success rate of 93.1% versus 75.5% of radiologic interventions. Moreover, among patients receiving surgical repair, 19% require additional intervention, and there does not seem to be a significant difference in graft survival post radiologic or surgical treatment.
Urological complications post KT, such as ureteral strictures, can be associated with graft dysfunction and graft loss. Ureteral strictures also have direct impacts on patient outcomes, particularly when surgical interventions are required, putting patients at risk for postoperative complications. That said, timely detection and appropriate management of ureteral strictures may prevent graft loss. Thus, it is imperative to improve the understanding and treatment of ureteral strictures post KT. Importantly, there remains a lack of consensus surrounding important information such as risk factors and best management practices which warrant further investigation. We sought to address these gaps by determining the incidence and trends of ureteral strictures, as well as examining the risk factors, clinical management, and patient outcomes of ureteral strictures in a large, single-centre cohort of kidney transplant recipients (KTR).

Methods

Study design and population
A single-centre, observational cohort study was conducted on adult KTR (aged 18 and older) transplanted between January 1st, 2005 and March 31st, 2017 with a minimum follow-up of one year. Eight surgeons were involved in the program during the study dates and ureteric stents were routinely used for all cases during the study period. Patients were excluded if they had prior non-kidney transplants, simultaneous multi-organ transplants or if their transplants were performed at other centres.

Data sources
Patient electronic medical records were reviewed for data abstraction, from our institution’s Organ Transplant Tracking Record and Electronic Patient Record systems and the Comprehensive Renal Transplant Research Information System. This study received approval from our institution’s research ethics board. Data was abstracted from clinical text documents and relevant diagnostic reports, such as Doppler ultrasound and biopsy reports. Adjudication of all suspected cases of ureteric strictures was performed by a transplant urologist (JYL).

Data analyses
In the first part of the analysis, ureteral strictures were examined as an outcome variable. Descriptive statistics were used to determine the incidence ureteral strictures and trends over time. Baseline recipient, donor, and transplant factors were summarized as mean values (± standard deviation, SD) for continuous variables. Categorical variables were reported as frequencies and percentages. The incidence of ureteral strictures within one-year post-transplant was reported as a person-time incidence rate and as a cumulative probability using the Kaplan-Meier (KM) product limit estimator.

The analysis of risk factor analysis for ureteral strictures was conducted using univariable and multivariable Cox proportional hazards models. Some risk factors examined include...
recipient age and sex, medical history such as history of diabetes and vascular disease, number of arteries, delayed graft function, and induction type. An additional exploratory analysis was conducted to determine the effects of our centre’s trends in stent removal times on ureteral strictures, using univariable Cox models.

Trends in time-to-resolution of ureteral strictures were examined and reported as the median number of days, with interquartile ranges at the 25th and 75th percentiles. Time-to-resolution of ureteral strictures was separated by treatment type, i.e., radiologic intervention alone vs. surgery after failed radiologic intervention.

Clinical management of ureteral strictures was reported as percentages, stratified by donor type (living vs deceased). Treatments typically employed at our centre include standard ultrasound-guided PN, PN and balloon dilation (range 5-7 mm/15-21 Fr), and open surgical repair (either ureteral reimplantation or ureteroureterostomy using ipsilateral native ureter).

Ureteral strictures were also examined as an exposure variable in their relationship to clinical outcomes post-transplant. Clinical outcomes included death-censored graft failure, death with graft function, total graft failure (defined as a composite of the first two outcomes) and hospital readmissions within one-year post-transplant (defined as at least one overnight stay). The cumulative probabilities of the aforementioned clinical outcomes were examined using the KM product limit method. For univariable and multivariable analyses, Cox proportional hazards models were fitted to determine the association of ureteral strictures on post-transplant outcomes. Violations of the proportionality assumption were checked using log(-log(S(t))) plots and the interactions between the risk factors with time and Schoenfeld residuals. No important departures from proportionality were detected. Missing values in the Cox proportional hazard models were imputed using multiple imputation.

All analyses were performed using Stata/MP, version 12.0. A two-tailed p-value of < 0.05 was considered statistically significant.

Results

Study population

After the application of the inclusion and exclusion criteria, the final study sample size was 1,742 KTR (Supplementary Figure 1). Over half of the population was male (60.5%), white (61.2%) and a little less than half (46.3%) had a living donor. The mean recipient age was 51.3 ±13.4 years. The median follow up time of KTR was 1 year. Of the KTR with a deceased donor, 33.8% were expanded criteria donors (ECD). Table 1 shows the distribution of participant baseline characteristics.
Incidence and trends of ureteral strictures

The incidence rate of ureteral strictures within the first year post-KT among our cohort was 1.31 (95% CI: 0.85, 2.01) per 100 person years, with a cumulative probability of ureteral strictures over the first-year post transplant of 1.2% (Supplementary Figure 2). The total number of incident ureteral stricture cases was 21, the majority of which (61.9%) occurred within 3 to 6 months of KT (Supplementary Table 1). The vast majority of cases developed after KTR were discharged from their transplant admission (95.2%). Incident cases were evenly distributed over the study cohort period, with 5 new cases (23.8%) occurring in 2016 (as compared to 1 to 3 cases per year during other years) (Supplementary Figure 3).

An exploratory analysis examined proportions of ureteral strictures among the total number of transplants performed by each of our institution’s surgeons. Proportions ranged from 0.0 to 0.5, with no significant trends across different surgeons (Supplementary Table 2).

Risk factors for ureteral strictures

Variables reported to be associated with greater risk for ureteral strictures in the literature, such as recipient age, male sex, number of arteries, and induction type were not significantly associated with ureteral strictures among our cohort. Other risk factors explored, such as recipient race, BMI, and history of diabetes or vascular disease, did not yield any associations (Supplementary tables 3 and 4). An exploratory univariable analysis on the effect of length of stents post transplant on the incidence of first ureteral strictures revealed a significant association (HR: 1.06, 95% CI: 1.05, 1.07).

Clinical management of ureteral strictures

While one patient had complete resolution of their stricture with NT alone, 9 (43%) required a balloon dilation. Of these patients, four patients required two dilations. All five patients that had open surgical repair following NT only all had ureteral reimplantations, while 2 of the 5 patients that required open surgical repair following attempted interventional radiology management required ureteroureterostomy using the ipsilateral native ureter. Both patients requiring ureteroureterostomy had living donors. One patient that went on to have surgical repair following balloon dilation had only 1 attempted dilation, while the other 4 patients each had 2 attempts.

Among deceased donor KTR with ureteral strictures (11), six cases (54.4%) were managed successfully with radiologic intervention alone, whereas 45.4% required open surgery following unsuccessful radiologic interventions. In contrast, 40% of living donor KTR with ureteral strictures (10) were managed successfully with radiologic intervention, while 60% needed surgery (Table 2).

Time to resolution of ureteral strictures

The median number of days to resolution of ureteral strictures with radiologic intervention, which included multiple radiologic interventions alone, and multiple radiologic attempts before going to surgery, was 128 (IQR: 90, 262). In contrast, the median number of days to resolution
of cases resolved with open surgery after NT alone (i.e. no attempted balloon dilations) was 63 (IQR: 43, 65). This difference in time to resolution was significant (p = 0.003).

Clinical outcomes of ureteral strictures
Ureteral strictures were significantly associated with death-censored graft failure (HR: 7.17, 95% CI: 2.81, 18.30), total graft failure (HR: 3.04, 95% CI: 1.41, 6.59) and hospital readmissions (HR: 2.52, 95% CI: 1.58, 4.00). Death with graft failure showed no associations with ureteral strictures, in univariable (Figure 1 a-d) or multivariable (Table 3) models.

Discussion
Our centre’s incidence rate of ureteral strictures of 1.31 (95% CI: 0.85, 2.01) per 100 person years (1.2% of all KTR in the first year of follow-up), is comparable to that reported in the literature, which ranges from 0.5 to 6.8%. The majority of cases occurred within the first three to six months post KT. Interestingly, commonly reported risk factors such as the number of arteries and induction type were not significantly associated with ureteral strictures in our cohort. Other baseline variables, such as recipient BMI or medical history, did not show any associations either. This may suggest that surgical technique-related factors may play a bigger role. However, exploratory analysis showed no significant differences in the proportions of KTR with ureteral strictures across our institution’s KT surgeons. There may exist variables that are either not well captured or without the granularity required to discern risk factors associated with stricture development in our cohort of KTR, such as length of ureter utilized, tissue handling technique, etc. In addition, other factors related to institutional practices may have contributed to the incidence. For instance, an exploratory analysis revealed a significant, positive association between the length of stent dwelling and the risk of ureteral strictures, with a 6% increase in risk per day post transplant. This finding, while on univariable modelling only, may have implications for practice at our centre. Some studies do report lower rates of urological complications for earlier stent removal times of 2 weeks post transplant. At our centre, it is standard for KTR to have their stents removed at 4-6 weeks based upon availability of cystoscopy clinic time. Other factors that impacted this timeframe, however, include reasons such as missed appointments, development of UTI, or patient illness. We were unable to capture this granular data for each case in a valid manner, so could not provide analysis.

Descriptive statistics of clinical management practices at our centre suggest almost half of all KTR that develop ureteral strictures were successfully managed with IR intervention alone. Given the lower morbidity of this management approach compared to surgical ureteric reimplantation, this likely represents a reasonable first option. This seems particularly true for deceased donor KTRs. Although the data is limited by the low overall event rate, the rate of successful IR intervention alone was 54.5% for deceased KTR vs 40% for living donor KTR. In addition, while event rate was too low to perform statistical analysis, both patients that required ureteroureterostomy repair after attempted balloon dilation (due to increased length of stricture
that made simple ureteral reimplantation unfeasible), had living donors. These findings may relate to the increased dissection of the ureter that often occurs during living donor nephrectomy, due to the need for mobilization of the gonadal vessels\(^3\). This suggests that perhaps living donor KTR that develop ureteral strictures might be best managed with early surgical repair. However, the small number of events among living donor KTR do not permit definitive conclusions.

Another finding from our study was that the time to resolution was significantly different between cases requiring multiple IR interventions (including those that eventually proceeded to open surgery) compared to those resolved with open surgery after only one failed radiologic intervention. This finding suggests using a more refined treatment algorithm whereby proceeding immediately to open reimplantation after only one failed IR intervention as opposed to multiple attempts at IR management of these strictures. However, given our low incidence, it is difficult to discern which patients would benefit most from an open vs an IR intervention up front.

Ureteral strictures post KT were significantly associated with death censored graft failure, total graft failure, and hospital readmissions. There was no association between ureteral strictures and death with graft failure. These findings emphasize the opportunity for improved surveillance and more timely management of ureteral strictures. Importantly, a ureteral stricture could potentially be a marker of a poor quality graft; whether it is inherent to the graft or recipient, it is crucial to gain a better understanding of its development and possible prevention. Though the incidence is low, the development of ureteral strictures, and perhaps the approach to management, seem to impact patient outcomes.

Some limitations of our study include its single-centre, retrospective design and the varied documentation of ureteral strictures in patients’ medical records. However, our transplant patient population is one of the largest and most diverse cohorts in North America, allowing for generalizability of results. To combat the latter limitation, consultations were held with our centre’s transplant urologist to adjudicate cases. Another major limitation is the lack of granularity with respect to certain variables of interest. For patients managed with balloon dilations, various sizes of balloon dilators were used (15-21 Fr) but we did not have details on why these variations existed as it was at the discretion of the interventional radiologist of the day. Also, while all surgeons used a refluxing technique for ureteral anastomosis during KT, granular details on length of ureter used, degree of tissue handling and trauma were not available. These details could play a significant role in ureteral stricture formation. Our study also only included 1-year of post-KT follow-up for the outcome of ureteral strictures. KTR that developed ureteral strictures more than 1-year from the time of KT were not captured in our analysis and so we are unable to characterize the incidence, risk factors, and management outcomes for those delayed presentations. Some of our analyses could not be done with multivariate models due to lack of events or data, warranting further research.

Recommendations for future research include more closely examining the effects of surgical technique on ureteral strictures. A comprehensive cost analysis of ureteral strictures may
provide insight as to which interventions should be the first line of treatment and for which patient population. Finally, some studies have explored alternative forms of treatment such as the thermo-expandable Memokath stent, and surgical interventions using an artificial ureter. It would be worthwhile to further explore these options in larger populations.

Conclusions
This large single-centre cohort of KTR demonstrated that the incidence of ureteral strictures is low but that it can significantly impact patient and graft outcomes post kidney transplantation. While no clear risk factors were found in our cohort, surgical technique may have played a significant factor. While a large proportion of patients can be managed successfully with minimally invasive radiologic procedures, a better understanding of which patients will ultimately require definitive open surgical repair is also imperative. Our data suggests living donor KTRs might be better managed with open repair, but further study is required.
References

30. StataCorp. Stata Statistical Software: Release 12. College Station, TX: StataCorp LP. 2011

Figures and Tables

Fig. 1. Cumulative probability of (A) death-censored graft failure; (B) death with graft function; (C) total graft failure; and (D) hospital re-admissions; separated by presence/absence of ureteral strictures.
Table 1. Baseline characteristics of study population at time of transplant

<table>
<thead>
<tr>
<th>Variables</th>
<th>Mean KTR age at transplant (years)</th>
<th>Characteristics n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of transplants (n=1742)</td>
<td>1742</td>
<td>51.3±13.4</td>
</tr>
<tr>
<td>Recipient sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>1053</td>
<td>689 (39.5%)</td>
</tr>
<tr>
<td>Recipient race</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-white</td>
<td>591</td>
<td>591 (38.8%)</td>
</tr>
<tr>
<td>White</td>
<td>931</td>
<td>931 (61.2%)</td>
</tr>
<tr>
<td>Recipient history of vascular disease</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>1250</td>
<td>1250 (72.0%)</td>
</tr>
<tr>
<td>Peak PRA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0%</td>
<td>840</td>
<td>840 (48.3%)</td>
</tr>
<tr>
<td>>0%</td>
<td>899</td>
<td>899 (51.7%)</td>
</tr>
<tr>
<td>Mean donor age at donation (years)</td>
<td>1733</td>
<td>47.4±14.5</td>
</tr>
<tr>
<td>Donor type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deceased (Non-ECD)</td>
<td>619</td>
<td>619 (35.5%)</td>
</tr>
<tr>
<td>Deceased (ECD)</td>
<td>316</td>
<td>316 (18.1%)</td>
</tr>
<tr>
<td>Living</td>
<td>807</td>
<td>807 (46.3%)</td>
</tr>
<tr>
<td>Delayed graft function</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>1363</td>
<td>1363 (78.2%)</td>
</tr>
<tr>
<td>Number of veins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1604</td>
<td>1604 (94.0%)</td>
</tr>
<tr>
<td>>1</td>
<td>103</td>
<td>103 (6.0%)</td>
</tr>
<tr>
<td>Number of arteries</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1356</td>
<td>1356 (79.3%)</td>
</tr>
<tr>
<td>>1</td>
<td>355</td>
<td>355 (20.7%)</td>
</tr>
<tr>
<td>Mean cold ischemic time (deceased only) (hours)</td>
<td>867</td>
<td>10.9 (14.8, 7.9)</td>
</tr>
<tr>
<td>Induction type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-depleting agent, e.g., basilixumab</td>
<td>424</td>
<td>424 (24.3%)</td>
</tr>
<tr>
<td>Depleting agent, e.g., ATG</td>
<td>1308</td>
<td>1308 (75.1%)</td>
</tr>
</tbody>
</table>

ATG: antithymocyte globulin; ECD: expanded criteria donors; KTR: kidney transplant recipients; PRA: panel-reactive antibodies.
Table 2. Treatment of ureteral strictures, separated by donor type

<table>
<thead>
<tr>
<th>Donor type</th>
<th>Perc nephrostomy only</th>
<th>Perc nephrostomy + balloon dilation only</th>
<th>Perc nephrostomy + surgery</th>
<th>Perc nephrostomy + balloon dilation + surgery</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deceased</td>
<td>1 (9.09%)</td>
<td>5 (45.45%)</td>
<td>4 (36.36%)</td>
<td>1 (9.09%)</td>
<td>11 (100%)</td>
</tr>
<tr>
<td>Living</td>
<td>0 (0%)</td>
<td>4 (40.00%)</td>
<td>2 (20.00%)</td>
<td>4 (40.00%)</td>
<td>10 (100%)</td>
</tr>
<tr>
<td>Total</td>
<td>1 (4.76%)</td>
<td>9 (42.86%)</td>
<td>6 (28.57%)</td>
<td>5 (23.81%)</td>
<td>21 (100%)</td>
</tr>
</tbody>
</table>

Table 3. Multivariable Cox proportional hazard models for the effects of ureteral strictures on clinical outcomes post transplantation

<table>
<thead>
<tr>
<th>Transplant outcomes</th>
<th>Death-censored graft failure</th>
<th>Death with graft function</th>
<th>Total graft failure</th>
<th>Hospital re-admission</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR (95% CI)</td>
<td>HR (95% CI)</td>
<td>HR (95% CI)</td>
<td>HR (95% CI)</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Ureteral strictures (yes vs. no)</td>
<td>7.17 (2.81, 18.30) <0.001</td>
<td>1.21 (0.29, 5.00) 0.79</td>
<td>3.04 (1.41, 6.59) 0.001</td>
<td>2.52 (1.58, 4.00) <0.001</td>
</tr>
</tbody>
</table>

CI: confidence interval; HR: hazard ratio.