Association of caudal block and postoperative complication after hypospadias repair

Postoperative complications of hypospadias repair in patients receiving caudal block vs. non-caudal anesthesia: A meta-analysis

Patrick Pine Tanseco^{1*}; Harkanwal Randhawa^{2*}; Michael Erlano Chua^{1,3}; Udi Blankstein²; Jin Kyu Kim^{3,4}; Melissa McGrath²; Armando J. Lorenzo^{3,4}; Luis H. Braga^{2**} ¹Institute of Urology, St. Luke's Medical Centre, Quezon City, NCR, Philippines; ²McMaster University, Hamilton, ON, Canada; ³The Hospital for Sick Children, Toronto, ON, Canada; ⁴Faculty of Medicine, University of Toronto, Toronto, ON, Canada **Authors contributed equally*

Cite as: *Can Urol Assoc J* 2018 December 3; Epub ahead of print. http://dx.doi.org/10.5489/cuaj.5688

Published online December 3, 2018

Abstract

Introduction: We performed a meta-analysis of the current literature to assess the association of caudal block and postoperative complication rates following hypospadias repair. **Methods:** A Systematic literature search was conducted on October 2017. Five reviewers

independently screened, identified, and evaluated comparative studies assessing postoperative outcomes following hypospadias repair with and without caudal block. The incidence of post-surgical complications from each study was extracted for caudal block and control groups to generate the odds ratio (OR) and corresponding 95% confidence intervals (CI). Effect estimates were pooled using inverse-variance method with random-effects model. Subgroup analyses were performed according to study type and hypospadias severity.

Results: Nine studies (2096patients) of low- to moderate-quality were included for metaanalysis. Overall pooled effect estimates demonstrated increased occurrence of postoperative complication rates among patients with caudal block (OR 2.32; 95% CI 1.29–4.16). Subgroup analysis according to hypospadias severity revealed that a significant increased OR in complication rate was noted among proximal hypospadias (OR 3.55; 95% CI 1.80–7.01), but not distal hypospadias (OR 1.31; 95% CI 0.59–2.88).

Conclusions: Our meta-analysis of poor-quality evidence may have revealed a significant association between caudal block and postoperative complications following hypospadias repair. However, subgroup analysis demonstrated that hypospadias severity is important in determining complication rates, suggesting that confounding factors and selection bias may play a central role in characterizing the true effect of the anesthesia approach.

Introduction

Hypospadias repair is one of the most common urologic surgeries performed among pediatric population for congenital anomaly correction (1). To provide adequate intra- and postoperative analgesia during hypospadias repair, pediatric anesthesiologists more commonly consider giving caudal anesthesia than local blocks for its durability and good safety profile (2, 3, 4). However, several recent studies have identified caudal anesthesia as a risk factor for complications after hypospadias repair, such as urethrocutaneous fistula formation, glans dehiscence and meatal stenosis (4,5,6). On the contrary, some studies and commentaries have postulated that confounders such as the severity of the disease and not the type of anesthesia is the risk factor for the development of complications (7,8). Due to inconsistencies of study results, there is no clear evidence to indicate that caudal anesthesia increases the development of post-operative surgical complication in post-hypospadias repair. To address the aforementioned circumstances, we performed a meta-analysis of current literatures to assess the association of caudal anesthesia and postoperative complication rates following hypospadias repair.

Methods

The protocol of this review was registered with PROSPERO registry (CRD 42017079661). The study was preformed according to the Cochrane Collaboration recommendations and complies with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement (9,10). The search strategy was developed in consultation with a health sciences librarian at McMaster University. The literature search was performed with no language restrictions on the following database from inception until October 30, 2017: MEDLINE, EMBASE, SCOPUS, Cochrane Library, including the Cochrane Database of Systematic Reviews and the Cochrane Central Register of Controlled Trials (CENTRAL). Unpublished and ongoing trials were searched on Clinicaltrial.gov. Both medical subject heading (MeSH) and free text were used: ((hypospadias [MeSH Terms] OR hypospadias [All Fields]) OR urethroplasty[All Fields]) AND(caudal[All Fields]) OR (anesthesia, caudal [MeSH Terms] OR ("anesthesia"[All Fields] AND "caudal"[All Fields]) OR "caudal anesthesia"[All Fields] OR ("anesthesia, caudal"[All Fields])). The references from the reviews on the topic, textbooks of related topics and studies that met our inclusion criteria were reviewed and cross-referenced for possible eligible records to be considered for the meta-analysis.

Inclusion criteria for selection of the study were randomized/quasi-randomized controlled trials, prospective and retrospective comparative studies (both cohort and case-controlled studies) that assessed the outcome of post-operative complications in male pediatric patients who underwent hypospadias repair under caudal block and compared to other analgesia or no analgesia as control group. The primary outcome assessed in this review was the overall complication rate of all kinds of hypospadias surgery. Post-operative complications include urethrocutaneous fistula, meatal stenosis, diverticula, glans dehiscence and urinary retention

were collectively treated as the composite primary outcome for this meta-analysis. No time restriction was placed on occurrence of post-operative complications from surgery. Studies or trials that did not state the complication outcomes stratified according to intervention groups were excluded since the effect estimate for the intervention cannot be assumed.

Five reviewers from two different institutions independently assessed the retrieved records and respective abstract according to the inclusion criteria. All records that were tagged by any of the reviewers were evaluated further for appropriateness and tagged for full-text retrieval. The evaluation and appraisal of the retrieved full-text articles were performed by two reviewers for final eligibility. Studies deemed eligible were assessed for methodological quality and risk of bias using the Cochrane Collaboration risk of bias tool, Newcastle-Ottawa quality assessment scale (NOQAS) and Risk of Bias in Non-Randomized studies- Intervention (ROBINS-I), for the randomized controlled trials and comparative studies (Cohorts and casecontrol studies), respectively (9,11). Discrepancies that arose in the assessment of individual studies were resolved by consensus or by the senior author. Data extraction from the included studies was done independently by two pairs of reviewers with cross validation. Raw data of event rate per group as reported from the individual studies were extracted for the extrapolation of odds ratio (OR) and 95% confidence intervals (CI). Intention-to-treat analysis was employed for the randomized studies if missing data was noted, and the assumption of missing data was done in favor of control. Whenever available, the adjusted effect estimates derived from multivariate analysis on the assessment of caudal anesthesia as independent predictor of posthypospadias repair complication were likewise extracted and later pooled with other calculated OR and 95% CI. If same study cohorts or multiple publications were seen, only the most recent publication or the most complete data reported was included for meta-analysis.

To address likely presence of detectable and undetectable clinical and methodological variability of the studies included, all extracted study data were pooled using general inverse variance method with random effect model to generate an average effect estimate. Sensitivity analysis was likewise performed to assess for presence of heterogeneity using Chi square with two-sided α level of 0.10 was considered presence of significant heterogeneity. The inter-study variability was further estimated using the I^2 statistic, which indicates the proportion of total variation in estimates attributed to heterogeneity. A cut-off of 50% for I^2 was used to represent moderate heterogeneity, which is considered significant for variability that requires additional subgroup or sensitivity analysis to identify source of heterogeneity. Subgroup analyses were performed according to study type and hypospadias severity to confirm whether the priori subgroup analysis could lessen the heterogeneity. Once moderate inter-variability was still noted despite subgroup analyses, the source of heterogeneity was identified, and then a repeat metaanalysis was performed by excluding the study identified as the source of heterogeneity. Evaluation for presence or absence of publication bias was performed via visual inspection of funnel plot generated by RevMan5 software, which was also the same program for the calculation of the effect estimate of OR and corresponding 95% CI, while the Comprehensive

meta-analysis software was used to conduct the meta-analysis for the pooled effect estimates of calculated OR and extracted adjusted OR and further statistical assessment of publication bias using Begg and Mazumdar rank correlation with Kendall's statistics (12, 13).

Results

The systematic literature search retrieved 502 records. Figure 1 summarizes the study selection process. After the duplicate records removed, out of the 189 records, 12 publications from 9 studies met the eligibility criteria for inclusion. Amongst the 9 studies, 7 were cohort design (5, 6, 7, 8, 14, 16, 17), one was a case-control (15), and one randomized controlled trial (4). All studies employed caudal anesthesia in at least one subgroup of patients and compared post-operative complications against other analgesics including dorsal penile block (n=5), continuous epidural analgesia (n=1), general anesthesia with no regional blockade (n=2), or IV anesthesia (n=1). The study characteristics of the included studies were summarized on Table 1.

Study quality

Using the NOQAS on the study quality screening of the comparative studies, scores ranging from 6 to 8 were noted. Further appraisal of the studies with ROBINS-I indicated moderate risk of bias for all cohorts and case control studies (Tables 2A–C). Confounding variables and selection of the reported result were accountable for the majority of the biases identified. These included severity of hypospadias, and presence of ventral curvature as factor of patient selective bias in group assignment. Additionally, majority of studies were retrospective in nature and several of these did not clearly outline their criteria for participant selection, which contributed to a lack of clarity when assessing selection bias or reporting bias as a result of the chosen subgroup. Cochrane Risk of bias assessment tool was used to evaluate the RCT, which showed moderate risk of bias (Tables 2A–C). Overall, the included studies were considered low to moderate quality evidence.

Effect of intervention

Overall, the nine studies included a total of 2,096 patients undergoing hypospadias repair. Of which, 1,225 patients received caudal anesthesia, and 871 under the comparator group. Among those received a caudal blockade, 171 (14%) patients developed post-operative complications, as compared to 53 (6.1%) patients in the comparator group. Extracted from the individual studies, the incidence of post-operative complications in caudal groups ranges from 3.7% to 37.5%; while 0% to 38.2% in non-caudal group. Overall pooled effect estimate extracted from the raw event rate from each intervention group showed significantly higher post-operative complications among the caudal anesthesia group (OR 2.32; 95% CI 1.29- 4.16) (Figure 2.1). However, a significant heterogeneity was noted on overall effect estimate pooling (Chi square= 17.11, p=0.03, I-squared= 53%). Subgroup analysis according to study type, noted a decreased inter-study variability among cohort studies (Chi square= 9.36, p=0.15, I squared= 36%) and sustained the significantly higher OR for caudal group (OR 2.59, 95% CI 1.49-4.51). When the

adjusted effect estimates extracted from the multivariate analyses of the studies that reported them, the inter-study variability was lessened; however, still with evident heterogeneity noted (chi-square =15.86, p= 0.04, I^2 = 50%). The overall pooled estimate with the adjusted OR remained in favor of the control groups (OR 2.27, 95%CI 1.29-4.01) (Figure 2.2).

Subgroup analysis

Further subgroup analysis according to hypospadias severity, showed that subgroup analysis for proximal hypospadias with no inter-study heterogeneity (chi-square=0.7, p= 0.71, I^2 = 0%), sustained the findings of significantly higher occurrence of post-operative complications among the caudal anesthesia group (OR 3.55, 95%CI 1.8-7.01, p<0.001) (Figure 3). On the contrary, the subgroup analysis among distal hypospadias patients, no between group difference was noted (OR 1.31, 95%CI 0.6-2.88, p=0.50). However, heterogeneity with moderate inter-study variability was still noted (chi-square=10.5, p= 0.06, I^2 =52.36%) (Figure 4.1). The study data from Zaidi 2015 was identified as source of heterogeneity, mainly due to its study type of case-control as compared to the other study type of cohorts. When this study was removed and repeat sensitivity analysis was performed, the heterogeneity was not evident (Chi square=6.06, p=0.14, I squared=42%) and the pool effect estimate remained no significant difference between the intervention groups (OR 1.6, 95%CI 0.76- 3.43, p=0.21) (Figure 4.2).

Publication bias

Upon visual inspection of the funnel plot to determine the presence of publication bias, the plot of standard error by log odds ratio from the included studies was suggestive of publication bias (Supplementary Figure 1). Further statistical validation using Begg and Mazumdar rank correlation employing Kendall's statistics, confirms the presence of publication bias in reporting significant findings (Kendall's P-O= 20, Tau =0.56, z= 2.09, p=0.04).

Discussion

Currently, there exists much debate surrounding the use of different analgesics in hypospadias repair, in particular the caudal anesthesia raises a concern with the incidence of post-surgical complications. The finding from our meta-analysis of overall pooled effect estimates suggests that compared to control group, an increased occurrence of post-operative complications in hypospadias repair among who was given with caudal anesthesia (OR 2.27, 95%CI 1.29-4.01). Current literature has postulated that there may indeed be a association between the use of caudal analgesia in hypospadias surgery and development of complications including fistula, meatal stenosis, and glans dehiscence (18). Some data have supported that penile engorgement occurs during caudal anesthesia due to sympathetic block and vasodilation of the penile sinuses, causing venous pooling and resultant tissue edema (14). All together, these speculations on physiological changes caused by caudal anesthesia may have effect on surgical outcome has led to vast debate on its safety, risk and benefit for hypospadias repair. However, a clear underlying physiological mechanism is yet to be understood.

Some authors suggest that a higher incidence of postoperative edema may result to delayed wound healing, but this assumption has not been adequately tested (4, 8). Available clinical studies have not characterized the anesthetic intervention itself as independent factors contributing to the incidence of post-operative complications (7,8). Furthermore, there are many confounding factors that could affect the development of post-operative complications. Such that Zaidi et al (2015) have found that the use of epinephrine subcutaneously to control bleeding may play a role in inadequate tissue healing, which was further supported by Ayob et al 2016 in their investigative study that ischemic reperfusion injury can be the mechanism behind the fistula formation (8, 18).

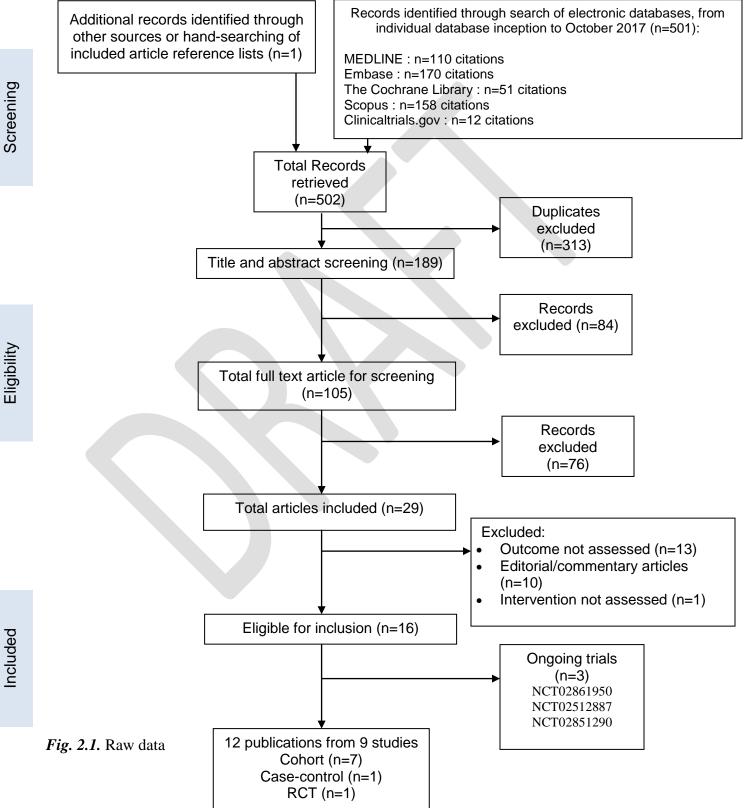
It is important to note however, that our analysis revealed that the significant association between occurrences of post-operative complications in patients with caudal blockade was sustained with cohort studies of moderate risk of bias in methodological quality due to selection bias and confounding (OR 2.59, 95% CI 1.49- 4.51) and subgroup assessment of proximal hypospadias (OR 3.55, 95% CI 1.8-7.01), but not in patients with distal hypospadias (OR 1.31, 95%CI 0.6-2.88). This reinforces that hypospadias severity and other confounders are important intervening factors in considering the association between regional blockade and complications. Previous literature has identified that proximal hypospadias, a more severe phenotype of the condition, is linked to higher rates of complications post-operatively (19, 20). Likewise, the hypospadias severity is an important confounding variable to consider a subgroup analysis to actually identify the causality or correlation of an intervention (21). In the choice of anesthesia, the subpopulations of proximal hypospadias are more likely to be given with caudal anesthesia over other anesthesia approach due to its more complex repair and long duration procedure. Particularly evident in this review, the pooled number of patients within the proximal subgroup receiving caudal analgesia was more than double the size of the group not receiving caudal block. This is reflective of a clinical selection bias in which patients with more severe hypospadias are more likely to receive caudal analgesia. However, it is likewise important to consider that proximal hypospadias repair with extensive dissection plus the physiologic change from caudal anesthesia, could lead to an overall increased occurrence of surgical complications. Noting these findings, as a key role of the clinician is to minimize harms to the patient, this postulation brings into question a new element of surgical planning that may require attention for children undergoing hypospadias repair, specifically among proximal type cases (19).

It is acknowledged that this meta-analysis has some major limitations. Most notably, that despite comprehensive literature search using sensitive search strategies, the available literature on the topic is mainly comprised of uncontrolled comparative studies, which most of them were retrospective in nature. Although a randomized controlled trial was found, yet only a small number of patients were included in the study with some concern on the risk of bias, rendering it a low to moderate quality of evidence. Additionally, not all comparative studies included in this review have adequately controlled for confounding factors that may have influenced the true estimation of the association between caudal analgesia and postoperative complications. We

mitigated this issue by using the adjusted point estimates whenever available from the included individual studies in pooling of effect estimates for the meta-analysis. Furthermore, we applied repeat sensitivity analysis with priori determined subgroup analysis to identify source of heterogeneity to minimize the effect of selection and confounding bias. Presence of publication bias in the available literature to generate the evidence was another considerable limitation. Base on GRADE criteria, the quality of evidence generated from our review, due to imprecision, inconsistency as well as publication bias, the body of evidence can only be considered at best a low quality to give any recommendations (22). Although, given such major limitation, the important message of our review is to increase cognizance that better-quality study should be made to generate more concrete evidence. Likewise, the review addresses a pertinent field of knowledge for healthcare practitioners to accurately characterize the association between caudal analgesia and post-operative complications of hypospadias repair. Lastly, our literature search has identified three ongoing randomized controlled trials, which are warranted to consider the confounders we discussed in this paper, while also expected to address the publication bias, if negative results would be noted.

Conclusion

The result of our meta-analysis revealed a significant association between caudal anesthesia and postoperative complications following hypospadias repair. However, subgroup analysis demonstrated that hypospadias severity is an important intervening factor that plays a role in determining complication rates associated with caudal anesthesia. The current available evidence was limited by its low quality suggesting that confounding factors and selection-bias may play a central role in characterizing the true effect of anesthesia type. A well-designed, adequately powered randomized controlled trial is warranted to confirm these findings.


References

- 1. Naoum Alsaigh NK, Chua ME, Ming JM, Dos Santos J, Saunders M, Igelsias Lopes R, Koyle M, Farhat W. Return to Emergency Department After Pediatric Urology Procedures.J Urol. 2017 Apr;197(4):e1302 .doi: 10.1016/j..juro.2017.02.3042
- 2. Sevedhejazi M, Azerfarin R, Kazemi F, Amiri M. Comparing caudal and penilenerve blockade using bupivacaine in hypospadias repair surgeries in children. AfrJ Paediatr Surg. 2011 Sep-Dec;8(3):294-7. doi: 10.4103/0189-6725.91673.
- 3. Thies KC, Driessen J, Kho HG, Kwak K, Knoll J, de Gier R, Feitz W. Longer than expected-duration of caudal analgesia with two different doses of levobupivacaine in children undergoing hypospadias repair. J Pediatr Urol. 2010 Dec;6(6):585-8.doi: 10.1016/j.jpurol.2010.01.009.
- 4. Kundra P, Kotteeswaran Y, Karoon A, Sudeep K, Lalla TK. Surgical outcome in children undergoing hypospadias repair under caudal epidural vs penile block. Pediatr Anesth. 2012.
- 5. Taicher BM, Routh JC, Eck JB, Ross SS, Wiener JS, Ross AK. The association between caudal anesthesia and increased risk of postoperative surgical complications in boys undergoing hypospadias repair. Paediatric Anaesthesia. 2017;27(7):688-94.
- 6. Kim MH, Im YJ, Kil HK, Han SW, Joe YE, Lee JH. Impact of caudal block on postoperative complications in children undergoing tubularised incised plate urethroplasty for hypospadias repair: a retrospective cohort study. Anaesthesia. 2016:71(7):773-8
- 7. Braga LH, Jegatheeswaran K, McGrath M, Easterbrook B, Rickard M, DeMaria J, et al. Cause and Effect versus Confounding-Is There a True Association between Caudal Blocks and Tubularized Incised Plate Repair Complications? Journal of Urology. 2017;Part 2. 197(3):845-51.
- 8. Zaidi RH, Casanova NF, Haydar B, Voepel-Lewis T, Wan JH. Urethrocutaneous fistula following hypospadias repair: Regional anesthesia and other factors. Paediatric Anaesthesia. 2015;25(11):1144-50
- 9. Higgins JPT, Green S, eds. Cochrane Handbook for Systematic Reviews of Interventions 4.2.6 (updated Sept. 2006). The Cochrne Library Issue 4, Sept 2006. Chichestr. UK: John Wilev and Sons Ltd.
- 10. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: the PRISMA Statement. PLoS Med 2009;6:e1000097
- 11. Sterne JAC, Higgins JPT, Reeves BC on behalf of the development group for ROBINS-I. ROBINS-I: A tool for assessing Risk Of Bias In Non-randomized Studies of Interventions, Version 5 July 2016. Retrieved June 2016 from http://www.riskofbias.info.Saavedra
- 12. Review Manager (RevMan) [Computer program]. Version 5.3. Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2014.
- 13. Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2006). Comprehensive Meta-Analysis (Version 2.2.027) [Computer software]. Englewood, NJ: Biostat

- Association of caudal block and postoperative complication after hypospadias repair
- 14. Saavedra-Belaunde JA, Soto-Aviles O, Jorge J, Escudero K, Vazquez-Cruz M, Perez-Brayfield M. Can regional anesthesia have an effect on surgical outcomes in patients undergoing distal hypospadia surgery? Journal of pediatric urology. 2017;13(1):45.e1-.e4.
- 15. Kreysing L, Hohne C. A retrospective evaluation of fistula formation in children undergoing hypospadias repair and caudal anesthesia. Paediatric Anaesthesia. 2016;26(3):329-30.
- 16. Ugras MY, Ergin H, Kilic S, Gunes A, Baynin CC. Factors affecting success in surgery for mid- and distal penile hypospadias: A comparative study of Mathieu and TIPU techniques. [Turkish]. Turk Uroloji Dergisi. 2006;32(3):375-80
- 17. Hakim S, Merguerian PA, Rabinowitz, R; Shortliffe, LD, Mckenna, PH. Outome analysis of the modified Mathieu hypospadias repair: comparison of stented and unstented repairs. J Urol. 1996 Aug; 156(2 Pt2):836-8
- 18. Ayob F, Arnold R. Do caudal blocks cause complications following hypospadias surgery in children? Anaesthesia. 2016;71(7):759-63
- 19. Haydar B. Editorial Comment. Journal of Urology. 2017;197(3):850.
- 20. Long CJ, Canning DA. Hypospadias: Are we as good as we think when we correct proximal hypospadias? Journal of Pediatric Urology. 2016 12, 196.21-196.e5
- 21. Chua ME, Gnech M, Ming JM, Silangcruz JM, Sanger S, Lopes RI, Lorenzo AJ,Braga LH. Preoperative hormonal stimulation effect on hypospadias repaircomplications: Meta-analysis of observational versus randomized controlledstudies. J Pediatr Urol. 2017 Oct;13(5):470-480. doi:10.1016/j.jpurol.2017.06.019.
- 22. Schünemann H, Brożek J, Guyatt G, Oxman A (editors). The GRADE Working Group. GRADE Handbook for Grading Quality of Evidence and Strength of Recommendations. Available from gdt.guidelinedevelopment.org/app/handbook/handbook.html Updated October 2013.

Figures and Tables

Fig. 1. PRISMA literature search and screening flow chart.

Eligibility

extracted for event per intervention group. Overall comparison: caudal anesthesia versus control group; outcome: postoperative complication; inverse-variance method with random-effect model. Subgroup according to study type. CI: confidence interval.

	Favours [Ca	audal]	Contr	ol		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% Cl
2.1.1 Case Control								
Zaidi 2015 Subtotal (95% CI)	32	101 101	13	34 34	16.4% 16.4%	0.75 [0.33, 1.68] 0.75 [0.33, 1.68]	2015	•
Total events Heterogeneity: Not applicat	32		13					
Test for overall effect: $Z = 0$								
2.1.2 Cohorts								
Hakim 1996	5	136	6	200	11.8%	1.23 [0.37, 4.13]	1996	_
Ugras 2006	9	24	2	30	8.2%	8.40 [1.60, 43.98]	2006	— • — •
Kim 2016	53	216	19	126	19.3%	1.83 [1.03, 3.26]	2016	
Kreysing 2016	4	33	4	37	9.5%	1.14 [0.26, 4.96]	2016	
Taicher 2017	21	230	1	165	6.2%	16.48 [2.19, 123.78]	2017	— — —
Braga 2017	32	367	5	151	14.5%	2.79 [1.07, 7.30]	2017	
Saavedra-Belaunde 2017 Subtotal (95% CI)	10	91 1097	3	101 810	10.7% 80.3%	4.03 [1.07, 15.15] 2.59 [1.49, 4.51]	2017	•
Total events	134		40					
Heterogeneity: Tau ² = 0.19;	Chi ² = 9.36, df	f = 6 (P =	= 0.15); l ²	= 36%				
Test for overall effect: Z = 3	.36 (P = 0.000	3)	,.					
2.1.3 Randomized Contro	lled Trials							
Kundra 2012 Subtotal (95% CI)	5	27 27	0	27 27	3.4% 3.4%	13.44 [0.70, 256.40] 13.44 [0.70, 256.40]	2012	
Total events	5		0					
Heterogeneity: Not applicat Test for overall effect: Z = 1								
Total (95% CI)		1225		871	100.0%	2.32 [1.29, 4.16]		•
Total events	171		53					
Heterogeneity: Tau ² = 0.37;	Chi ² = 17.11, 0	df = 8 (P	= 0.03); l	² = 53%	/ 0			
Test for overall effect: Z = 2			,,					0.001 0.1 1 10 10 Favours [Caudal] Favours [Control]
Test for subgroup difference	```		⊂ = 0.02),	l² = 74	.8%			ravours [Caudai] ravours [Control]

Fig. 2.2. Adjusted odds ratio and raw data extracted for event per intervention group. Overall comparison: caudal anesthesia versus control group; outcome: postoperative complication; inverse-variance method with random-effect model. CI: confidence interval.

Study name		Statisti	cs for ea	ch study			Odds rat	io and 9	5% CI	
	Odds ratio	Lower limit	Upper limit	Z-Value	p-Value	Inve	rse Variance	(Randon	n effect M	odel)
Hakim 1996	1.230	0.368	4.109	0.336	0.737		-	–	-	
Ugras 2006	8.400	1.602	44.040	2.518	0.012			-		-
Kundra 2012	13.440	0.702	257.223	1.725	0.084			+		
Zaidi 2015	0.750	0.332	1.692	-0.693	0.488		-			
Kim 2016	2.080	1.138	3.803	2.379	0.017			- e -	-	
Kreysing 2016	1.140	0.261	4.979	0.174	0.862		_	_	-	
Taicher 2017	13.400	1.782	100.773	2.521	0.012			-	 	
Saavedra-Belaundre 2017	4.030	1.071	15.164	2.061	0.039				•	
Braga 2017	2.390	0.892	6.404	1.733	0.083			+	-1	
OVERALL Effect estimates	2.269	1.285	4.007	2.825	0.005				•	
Heterogeneity			Tau-se	puared		0.01	0.1	1	10	100
Q-value df(Q) P-value I-sq	ared	Tau Squared	Standard Error	Variance	Tau	F	avours Caudal	Fa	vours Contr	ol
15.860 8 0.044	49.559	0.332	2 0.361	0.130	0.576					

Fig. 3. Adjusted odds ratio and raw data extracted for event per intervention group. Subgroup analysis: proximal hypospadias; comparison: caudal anesthesia vs. control group; outcome: postoperative complication; inverse-variance method with random-effect model. CI: confidence interval.

Study name		Statist	ics for ea	ach study	_	Odds rati	o and 95% Cl
	Odds ratio	Lower limit	Upper limit	Z-Value	p-Value	Inverse Variance (F	Random effect Model)
Kim 2016	3.140	1.497	6.587	3.027	0.002		
Braga 2017	6.160	0.742	51.144	1.684	0.092		↓ ■ ↓ ↓
Taicher 2017	8.250	0.472	144.160	1.446	0.148	-	
OVERALL Effect estimate	s 3.554	1.802	7.010	3.659	0.000		
Heteroge	eneity			Tau-squared			
Q-value df (Q)	P-value I-s	quared		ndard ror Variance	e Tau	0.01 0.1	1 10 100
0.700 2	0.705	0.000	0.000	0.859 0.73	38 0.000	Favours Caudal	Favours Control

Fig. 4.1. Adjusted odds ratio and raw data extracted for event per intervention group. Subgroup analysis: distal hypospadias; comparison: caudal anesthesia vs. control group; outcome: postoperative complication; inverse-variance method with random-effect model. CI: confidence interval.

Study name		Statisti	ics for ea	ch study		Odds ratio and 95% Cl			
	Odds ratio	Lower limit	Upper limit	Z-Value	p-Value	Inverse Variance (Random effect Model)			
Hakim 1996	1.230	0.368	4.109	0.336	0.737				
Zaidi 2015	0.280	0.057	1.376	-1.567	0.117	│ ┽∎┽ │ │			
Kim 2016	0.770	0.299	1.983	-0.541	0.588				
Braga 2017	1.310	0.448	3.827	0.494	0.622				
Saavedra-Belaunde 2017	4.030	1.071	15.164	2.061	0.039				
Taicher 2017	16.230	0.938	280.738	1.916	0.055				
OVERALL Effect estimates	1.310	0.595	2.883	0.670	0.503	🔶			
Heterogeneity			Tau-s	quared		0.01 0.1 1 10 100			
Q-value df(Q) P-value I-s	quared	Tau Squared	Standard Error	Variance	Tau	Favours Caudal Favours Control			
10.497 5 0.062	52.365	0.48	12 0.601	0.361	0.694				

Fig. 4.2. Adjusted odds ratio and raw data extracted for event per intervention group. Subgroup analysis: distal hypospadias; comparison: caudal anesthesia vs. control group; outcome: postoperative complication; inverse-variance method with random-effect model (Zaidi et al 2015 excluded). CI: confidence interval.

Study name		Statist	ics for ea	ich study			Odds ra	tio and	95% CI	
	Odds ratio	Lower limit	Upper limit	Z-Value	p-Value	Invers	e Variance	(Rando	m effect l	Vlodel)
Hakim 1996	1.230	0.368	4.109	0.336	0.737		-	-	-	
Kim 2016	0.770	0.299	1.983	-0.541	0.588		-	-		
Braga 2017	1.310	0.448	3.827	0.494	0.622				-	
Saavedra-Belaunde 2017	4.030	1.071	15.164	2.061	0.039				∎∔	
Taicher 2017	16.230	0.938	280.738	1.916	0.055			\vdash	_ - •-	-
OVERALL Effect estimates	1.618	0.763	3.430	1.256	0.209			•	•	
Heterogeneity			Tau	squared		0.01	0.1	1	10	100
Q-value df(Q) P-value I-	squared	Tau Square	Standar d Error	d Variance	Tau	0.01	0.1		10	100
6.868 4 0.143	41.759	0.2	95 0.51	0 0.260	0.543	Fa	vours Cauda	l Fe	avours Cont	rol

Tanseco et al Association of caudal block and postoperative complication after hypospadias repair

Table 1. Ge	eneral characte	eristic	s of nine inc	luded studies				
Study	Study type	n	Mean followup	Surgical technique(s)	Single surgeon?	Intervention	Comparator group(s)	Outcome(s) assessed
Braga et al, 2017, Canada	Cohort	518	13 months	TIP urethroplasty	No	Caudal	DPB (bupivicaine 0.25% without epi)	Fistula, glans dehiscence
Hakim et al, 1996, U.S.	Cohort	336	Minimum 6 months	Mathieu repair	No	Caudal	DPB, continuous epidural	Fistula, meatal stenosis, meatal retraction
Kim et al, 2016, South Korea	Cohort	342	6 months	Tubularized incised plate urethroplasty	Yes	Caudal (ropivicaine 0.15–0.2% 1–1.5 mL/kg)	IV (fentanyl 0.05–0.1 ug/kg bolus + 0.2–0.4 ug/kg/h)	Fistula, meatal stenosis
Kreysing et al, 2016, Germany	Cohort	70	3.28 years	N/A	Yes	Caudal	No caudal [*] DPB (n=1)	Fistula, dehiscence, meatal stenosis, cyst
Kundra et al, 2012, India	Randomized trial	54	N/A	Snodgrass urethroplasty, snodgraft technique, asopa I urethroplasty, scrotal flap technique, preputial island flap, onlay patch urethroplasty, urethral	No	Caudal (14opivacaine 0.25%, 0.5 ml/kg)	DPB (14opivacaine 0.25%, 0.5 mg/kg)	Fistula

Tanseco et al

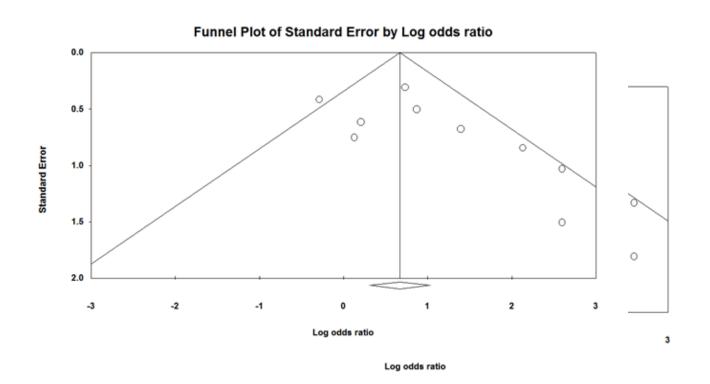
Association of caudal block and postoperative complication after hypospadias repair

				advancement				
Saavedra- Belaunde et al, 2017, U.S.	Cohort	192	4 years	Tubularization of urethral plate ± plate incision	Yes	Caudal (15opivacaine 0.25%, 1 mL/kg)	DPB (15opivacaine 0.25%)	Fistula, glans dehiscence, meatal stenosis
Taicher et al, 2017, U.S.	Cohort	395	Minimum 6 months	Hypospadias repair with Dartos flap	Yes	Caudal (15opivacaine 0.25% or 15opivacaine 0.12%)	DPB (15opivacaine 0.25% or 15opivacaine 0.12%)	Fistula, glans dehiscence
Ugras et al, 2006, Turkey	Cohort	54	N/A	Tubularized incised plate urethroplasty, Mathieu repair	No	Caudal	GA	Fistula, glans dehiscence
Zaidi et al, 2015, U.S.	Case control	135	Minimum 6 months	Tubularized incised plate urethroplasty, meatal advancement and glanuloplasty, preputial island onlay	No	Caudal	DPB	Fistula

	ROBINS-I											
Cohort study	Bias due to confounding	Bias in selection of participants into the study	Bias in measurement of interventions	Bias due to departures from intended interventions	Bias due to missing data	Bias in measurement of outcomes	Bias in selection of the reported result	Overall bias				
Braga et al, 2017	Low	Moderate	Low	Low	Low	Moderate	Low	Moderate				
Hakim et al, 1996	Moderate	Low	Low	Low	Moderate	Low	Low	Moderate				
Kim et al, 2016	Low	Moderate	Low	Low	Low	Low	Moderate	Moderate				
Kreysing et al, 2016	Moderate	Low	Low	Low	Moderate	Moderate	Moderate	Moderate				
Saavedra- Belaunde et al, 2017	Moderate	Low	Low	Low	Low	Low	Moderate	Moderate				
Taicher et al, 2017	Low	Low	Low	Low	Low	Moderate	Moderate	Moderate				
Ugras et al, 2006	Moderate	Moderate	Low	Low	Low	Low	Low	Moderate				
Case- control	Bias due to confounding	Bias in selection of participants into the study	Bias in measurement of interventions	Bias due to departures from intended interventions	Bias due to missing data	Bias in measurement of outcomes	Bias in selection of the reported result	Overall bias				

Zaidi et al,	Moderate	Moderate	Low	Low	Low	Moderate	Moderate	Moderate
2015								

Table 2	B. Risk of bias ass	sessment using th	e Newcastle-	Ottawa qualit	y scale and ca	se-control stu	dy		
			1	NOQAS					
	Representativ eness of the exposed cohort	Selection of the non- exposed cohort	Ascertain ment of exposure	Demonstra tion that outcome of interest was not present at start of study	Comparab ility	Assessmen t of outcome	Was followup long enough for outcomes to occur	Adequ acy of followu p of cohorts	Total NOS score
Braga et al, 2017	1	1	1	1	2	1	Х	1	8
Hakim et al, 1996	1	1	1	1	1	Х	Х	1	6
Kim et al, 2016	1	1	1	I	2	Х	Х	1	7
Kreysi ng et al, 2016	1	1	1	1	1	1	1	Х	7
Saaved ra- Belaun	1	Х	1	1	1	1	1	Х	6


Tanseco et al

Association of caudal block and postoperative complication after hypospadias repair

de et									
al,									
2017									
Taicher	1	1	1	1	1	1	Х	1	7
et al,									
2017									
Ugras	1	1	1	1	1	1	Х	1	7
et al,									
2006									
	Case	Representativ	Selection	Definition	Comparab	Ascertain	Same	Non-	Total
Case-	definition	eness of case	of controls	of control	ility	ment of	method of	respons	NOQ
control	adequate					exposure	ascertain	e rate	AS
	-					-	ment		
Zaidi et	1	Х	1	X	2	1	1	1	7
al,									
2015									

Table 2B. Ris	Table 2B. Risk of bias assessment using the risk of bias for randomized controlled trial											
Randomized	Sequence	Allocation	Blinding of	Blinding	Incomplete	Selective	Conflict	Informed	Ethics	ITT	Other	Overall
controlled	generation	concealment	participants	of	outcome	outcome	of	consent	board		bias	assessment
trial				assessors	data	reporting	interest		review			
Kundra,	Low	Low	High	Low	High	Unclear	Low	Low	Low	High	High	Low to
			-		-					-	-	

Supplementary Fig. 1. Funnel plot of standard error by log odds ratio from the included studies in the overall meta-analysis.

