Exposure to radiation and medical oncology training: A survey of Canadian urology residents and fellows

Amandeep S. Taggar, MD, MS; Kevin Martell, MD; Siraj Husain, MD; Michael Peacock, MD; Michael Sia, MD; Geoffrey Gotto, MD

Introduction: Residency experiences and teaching in oncology among urology residents are variable across Canada. We sought to identify how radiation and medical oncology concepts, as they pertain to genitourinary malignancies, are taught to urology residents.

Methods: A total of 190 trainees enrolled in Canadian urology residency training programs were invited to participate in the study from January 2016 to June 2016. Participants completed an online questionnaire addressing the training they received.

Results: The overall response rate was 32%. Twenty-three percent of respondents were in their fellowship year; 17%, 20%, 10%, 17%, and 12% were first-, second-, third-, fourth-, and fifth-year residents, respectively, with a median of four (range 1–9) respondents from each training program. Ninety-five percent of respondents had academic half-day (AHD) as part of their training that included radiotherapy (61%) and chemotherapy (51%) teaching. Most respondents indicated their main exposure to chemotherapy and radiation came from informal teaching in urology clinics. Twenty-nine percent and 41%, of participants had mandatory rotations in radiation and medical oncology, respectively. Only 6% of respondents used their voluntary elective time in these disciplines and most voluntary electives were of 1–2-week duration. Despite this, 90% of respondents preferred some mandatory radiation and medical oncology training.

Conclusions: Most of the limited exposure that urology residents have to medical and radiation oncology is through AHD or informal urology clinics, despite a desire among current urology trainees to have clinical exposure in these areas. Moving forward, urology residency programs should consider integrating medical and radiation oncology rotations into the residency program curriculum.

Introduction

Royal College of Physicians and Surgeons of Canada (RCPSC) requirements for residency training in urology are justifiably surgery-intensive. Generally, it is required that trainees complete 26 blocks in core surgical training and 39 blocks of urology residency training, including three blocks of research or elective time. RCPSC training requirements also stipulate that urology residency programs may include some rotations in oncology as a subspecialty domain. A typical non-subspecialty urology practice can include up to 50% oncology patients, with prostate cancer being the most common diagnosis in these patients.

Oncology is a highly collaborative and interdisciplinary specialty, with patients often seeing several specialists, including but not limited to: urologists, radiation oncologists, medical oncologists, and palliative care physicians. There have been numerous surveys about urology residency training and most focus on the surgical experience, research opportunities, psychosocial stress, and study habits of the residents enrolled in the residency programs. To our knowledge, there is no published report of urology residents’ exposure to the other subspecialties mentioned above, with whom the practicing urologist may have close working relationships. We sought to identify what training in these subspecialties is available to residents in urology programs in Canada.

The primary objective of this survey was to highlight current training methods whereby urology trainees attain proficiency in oncology topics and identify processes that can be implemented to improve oncological training of urology residents.

Methods

All Canadian urology residency programs were identified with assistance from the Canadian Urological Association.
A 28-item questionnaire with both open- and closed-ended questions, designed using SurveyMonkey™ (www.surveymonkey.com Palo Alto, CA, U.S.) was sent to all currently enrolled residents and fellows via the CUA email directory, after obtaining approval from the residency program directors. Reminder emails were sent to all invitees if they had not responded. The survey was conducted between January and June 2016, inclusive.

Questions focused on academic half-day (AHD) curricula, learning experiences pertaining to oncology subspecialties, mandatory and elective rotations in these subspecialties, and opinions and biases regarding current urological oncology case management. Data were anonymized and amalgamated into a single database and analyzed using Microsoft Excel™ (Seattle, WA, U.S.) for charting. R version 3.1.3 (www.r-project.org) was used for descriptive statistics and confidence intervals of estimates were corrected for finite population size of 190 when analyzing the entire cohort, and 160 and 40 when analyzing for resident and fellows, respectively.

All data was collected in accordance with the Health Information Act of Alberta after online ethical review using the Alberta Research Ethics Community Consensus Initiative (ARECCI) method.6

Results

A total of 60 responses were collected (response rate 32%). Fifteen of 60 respondents (25%) were in their fellowship year and the rest were from various residency years: 10 (17%), 12 (20%), 6 (10%), 10 (17%), and 7 (12%) were from first, second, third, fourth, and fifth year of their residency, respectively. Seventy-six percent of respondents were male. Demographically, all major regions of Canada were represented in the survey.

Ninety-five percent of residents reported that they have structured AHDs as part of their residency curriculum. Didactic teachings during AHD provided the bulk of radiation and medical oncology exposure for the respondents, along with informal instruction during regular urology clinics. However, when asked if their structured AHD has dedicated teaching about radiotherapy, chemotherapy, and endocrine therapy, only 60% responded “yes.” Fig. 1 depicts the proportion of resident respondents that have dedicated teaching about oncological topics during their structured AHD. Other ways in which respondents felt they were exposed to these subspecialties included weekly tumour board conferences (TBCs). When asked, “How many times a year do you attend TBC?” 11 of 49 (22%) responded they attended more than 21 TBCs per year; another 11 (22%) reported they attended between 11 and 20 TBCs; the remaining 56% of respondents attended less than 10 TBCs per year. When considering the 42 resident respondents only, 10 (24%), 6 (14%), and 26 (62%) attended greater than 21, 11–20, and less than 10 TBCs per year, respectively. Close inspection of the individual responses indicated that trainees in the higher years of training attended higher numbers of TBCs.

When asked about ways to gain experience in radiation or medical oncology, more than 90% of respondents prefer to do at least some clinical rotations in these disciplines. However, more than half of respondents indicated they had no mandatory or elective rotations in radiation or medical oncology during their residency training (Fig. 2).

In order to gain further understanding of the knowledge acquired by the trainees, we asked specific questions about common urologic oncology scenarios. Fig. 3 shows an example of two scenarios, where residents were asked to recommend a treatment option for a man presenting with early prostate cancer. In the open-ended scenario, almost all trainees recommended active surveillance to a patient with low-risk disease. However, for the patient who refused active surveillance, 78% all respondents (and 81% of
resident respondents) recommended radical prostatectomy (RP), despite no clear evidence that RP is superior to any other treatment modality and despite 70% of respondents believing that prostatectomy and brachytherapy (BT) would yield similar outcome for low-risk patients (Table 1). For head-to-head comparisons of various treatment modalities, the responses were mixed; most respondents answered that RP was superior to BT for low-tier intermediate-risk prostate cancer but equal to external beam radiotherapy (EBRT). For high-tier intermediate-risk and high-risk patients, the responses were again diverse, with half of the respondents answering that RP yielded superior outcome compared EBRT and a further 41% answering that the two modalities would provide equal results.

Discussion

Modern oncology practice requires a highly collaborative approach that involves multiple disciplines. A practicing urologist is, in essence, an oncologic surgeon, as she/he may be involved in treating cancer patients and most often deals with topics that include radiation and medical oncology discussions. This is the first ever survey of its kind designed to understand methods in which urology trainees acquire knowledge of oncology topics that they would encounter during their practice. We found that AHD is the primary method of exposure to these topics for residents in Canadian urology programs. Interestingly, up to half of respondents indicated they received no teaching in these areas. Furthermore, most respondents agreed that spending between two and four weeks of clinical rotation time in radiation and medical oncology would be beneficial to their training.
Table 1. Responses to questions regarding biochemical relapse free survival for a similar patient treated with different modalities

<table>
<thead>
<tr>
<th></th>
<th>All respondents</th>
<th>Resident respondents</th>
<th>Fellow respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n (%) (95% CI)</td>
<td>n (%) (95% CI)</td>
<td>n (%) (95% CI)</td>
</tr>
<tr>
<td>Low-risk (n=48)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP superior to BT</td>
<td>14 (29) (18–40)</td>
<td>12 (29) (17–41)</td>
<td>2 (29) (0–59)</td>
</tr>
<tr>
<td>RP inferior to BT</td>
<td>1 (2) (0–6)</td>
<td>1 (2) (0–7)</td>
<td>0 (0) (n/a)</td>
</tr>
<tr>
<td>RP equal to BT</td>
<td>33 (69) (57–80)</td>
<td>28 (68) (56–81)</td>
<td>5 (71) (41–100)</td>
</tr>
<tr>
<td>Low-tier-intermediate-risk (n=46)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP superior to BT</td>
<td>30 (65) (53–77)</td>
<td>26 (65) (52–78)</td>
<td>4 (67) (31–100)</td>
</tr>
<tr>
<td>RP inferior to BT</td>
<td>1 (2) (0–6)</td>
<td>0 (0) (n/a)</td>
<td>1 (17) (0–45)</td>
</tr>
<tr>
<td>RP equal to BT</td>
<td>15 (33) (21–44)</td>
<td>14 (35) (22–48)</td>
<td>1 (17) (0–45)</td>
</tr>
<tr>
<td>Low-tier-intermediate-risk (n=45)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP superior to EBRT</td>
<td>15 (33) (21–44)</td>
<td>13 (33) (20–46)</td>
<td>2 (33) (0–69)</td>
</tr>
<tr>
<td>RP inferior to EBRT</td>
<td>1 (2) (0–6)</td>
<td>1 (3) (2–7)</td>
<td>0 (0) (n/a)</td>
</tr>
<tr>
<td>RP equal to EBRT</td>
<td>29 (64) (52–76)</td>
<td>25 (64) (51–78)</td>
<td>4 (67) (31–100)</td>
</tr>
<tr>
<td>High-tier-intermediate-risk (n=45)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP superior to EBRT</td>
<td>22 (49) (36–67)</td>
<td>18 (46) (33–60)</td>
<td>4 (67) (31–100)</td>
</tr>
<tr>
<td>RP inferior to EBRT</td>
<td>2 (4) (0–10)</td>
<td>2 (5) (1–11)</td>
<td>0 (0) (n/a)</td>
</tr>
<tr>
<td>RP equal to EBRT</td>
<td>21 (47) (34–59)</td>
<td>19 (49) (35–62)</td>
<td>2 (33) (0–69)</td>
</tr>
<tr>
<td>High-risk (n=44)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP superior to EBRT</td>
<td>22 (50) (37–63)</td>
<td>20 (53) (39–67)</td>
<td>2 (33) (0–69)</td>
</tr>
<tr>
<td>RP inferior to EBRT</td>
<td>4 (9) (2–17)</td>
<td>3 (8) (0–15)</td>
<td>1 (17) (0–45)</td>
</tr>
<tr>
<td>RP equal to EBRT</td>
<td>18 (41) (28–54)</td>
<td>15 (39) (26–53)</td>
<td>3 (50) (13–87)</td>
</tr>
</tbody>
</table>

BT: brachytherapy; CI: confidence interval; EBRT: external beam radiation therapy; RP: radical prostatectomy.

Although urology training programs across the country vary in their structure and design, they generally focus on core surgical and urology training. There is little dedicated training in radiation and/or medical oncology. Urologists are often the first point of contact for patients and they routinely outline treatment options to their patients, including those that may be offered by radiation and/or medical oncologists. In one study, it was observed that initial recommendation by a urologist correlates with the treatment received by the patient. The authors of this study also found that the initial patient preference, prior to consultation with the urologist, did not predict for actual treatment received by the patient. Fig. 3 and Table 1, for example, highlight scenarios designed to elucidate urology trainees’ understanding of and confidence in interpreting the information. In the study regarding patient decision-making and global health-related quality of life (gHR-QoL), Drummond et al found that an informed patient actively participating in the shared treatment decision-making process may lead to better gHR-QoL outcome.

Another approach to an informed patient decision-making process is implementation of multidisciplinary care clinics. Aizer et al found that consultation at a multidisciplinary care clinic was associated with significantly increased rate of active surveillance in men with low-risk prostate cancer. Others have shown that individual specialists prefer the treatment modality that they themselves deliver. Furthermore, Aizer et al also found that the number of physicians and specialties seen at the multidisciplinary clinic was significantly associated with patient’s choice of treatment received. Multidisciplinary clinics have also been shown to enhance patient decision and management in other cancers. The implementation of multidisciplinary clinics, however, requires a significant investment of time from healthcare providers, as well as other allied health services, and administrative support from hospitals and health systems. Providing urology residents and fellows with a more comprehensive exposure to the non-surgical treatment modalities for prostate cancer has the potential to improve the decision-making process for patients who are not seen in multidisciplinary clinics or until such multidisciplinary clinics become a more common reality.

Currently, the most common method for learning in residency training programs is exposure through clinical rotations as a means of practical application of knowledge obtained through study. This allows a deeper understanding of and confidence in interpreting the information. Contemporary studies show that trainees enhance their skills on a particular topic when they undertake mandatory or
elective 2–4-week clinical rotations.19,20 Our survey found that a majority of urology residents do not receive clinical exposure to radiation or medical oncology to supplement the knowledge obtained through informal teaching or AHD settings. This may explain why urology residents would prefer having longer clinical rotations in those fields.

When interpreting the current study, it is important to be mindful of it being based on a survey with a moderate response rate (32%), raising the potential for response bias. To help mitigate this, finite population confidence intervals were calculated and are presented. Also, a proportion of the respondents were in their first or second year of training (37%) and may not have completed an entire AHD teaching cycle; however, when analyzing their responses separately, they did not have significantly different treatment recommendations or preference for surgical intervention.

Conclusion

This study shows a perceived need for radiation and medical oncology rotations in Canadian urology training programs.

Competing interests: Dr. Husain has received a grant from Elekta. Dr. Peacock has been a consultant for Bayer. Dr. Gatto has attended advisory boards for and received honoraria from Amgen, Astellas, Bayer, BMS, Janssen, Pfizer, and Sanofi; and has participated in the following clinical trials: ARAMIS, COSMIC, EMBARK, ENZAMET, HERO, SPARTAN, and TITAN. The remaining authors report no competing personal or financial interests.

Acknowledgement: This manuscript was presented in part at the Canadian Urological Association Annual Scientific Meeting in Toronto, June 24–27, 2017. Presentation #MP-10.10

This paper has been peer-reviewed.

References

Correspondence: Dr. Amandeep S. Taggar, Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, ON, Canada; aman.taggar@sunnybrook.ca