Treatment options in advanced renal cell carcinoma after first-line treatment with vascular endothelial growth factor receptor tyrosine kinase inhibitors

Naveen S. Basappa, MD, FRCPC
Department of Medical Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada

Abstract
Targeted therapy for metastatic renal cell carcinoma (mRCC) was introduced a decade ago and since then, a number of therapeutic options have been developed. Vascular endothelial growth factor-targeted therapy is the widely accepted first-line option for mRCC. After progression, treatment in the second-line setting has typically been with either axitinib or everolimus. However, with the advent of several new agents demonstrating efficacy in the second-line setting, including nivolumab, cabozantinib, and the combination of lenvatinib and everolimus, the treatment paradigm has shifted toward these novel therapies with improved patient outcomes.

Introduction
The current approach to the treatment of metastatic renal cell carcinoma (mRCC) consists of sequential administration of single agents that target the vascular endothelial growth factor (VEGF) or mammalian target of rapamycin (mTOR) pathways. In Canada, a VEGF receptor-tyrosine kinase inhibitor (VEGFR-TKI) is the widely accepted treatment of choice in the first-line setting, namely sunitinib or pazopanib, for patients with mRCC. The mTOR inhibitor temsirolimus is a recognized option in select situations, although rarely used.

Following progression in the first-line setting, the VEGFR-TKI axitinib or the mTOR inhibitor everolimus are the recommended second-line options in Canada; however, three new options with demonstrated efficacy in the second-line setting have arisen — nivolumab (a programmed death 1 [PD-1] inhibitor), cabozantinib (a TKI that inhibits VEGF, MET, and AXL), and the combination of lenvatinib (a VEGFR and fibroblast growth factor receptor [FGFR] TKI inhibitor) and everolimus.

Second-line treatment options

Axitinib
Axitinib is a highly selective inhibitor of VEGFR-1, -2, and -3. In an open-label, phase 2 study of 62 patients with sorafenib-refractory mRCC of any subtype, axitinib showed antitumour activity with mild-to-moderate toxicities. The randomized, phase 3 AXIS trial directly compared the efficacy and safety of axitinib with those of sorafenib in 723 patients with advanced RCC from 175 centres in 22 countries. Previous treatments included sunitinib (54%), cytokines (35%), bevacizumab (8%), and temsirolimus (3%). Although there was no difference in overall survival (OS) between the two groups, treatment with axitinib resulted in a significantly longer progression-free survival (PFS) compared with sorafenib at 6.7 months vs 4.7 months, respectively (p<0.0001). Common toxicities of axitinib were diarrhea, hypertension, and fatigue. Final survival analysis confirmed no difference in OS, with PFS results continuing to favour axitinib over sorafenib.

Everolimus
Everolimus is an mTOR inhibitor that binds with high affinity to its intracellular receptor (FKBP12) inhibiting the mTORC1 complex and subsequent cell growth, proliferation, and survival. Encouraging antitumour activity was demonstrated in the phase 2 trial of everolimus comprising 39 patients with RCC who had progressed on systemic immunotherapy, chemotherapy, and/or TKI therapy, with a PFS greater than six months in approximately 70% of patients. In the phase 3 RECORD-1 study, 416 patients from 86 centres who had progressed during or within six months of treatment with sunitinib, sorafenib, or both, were randomly assigned to best supportive care plus either everolimus or placebo. PFS was significantly greater in the everolimus arm (4.9 vs.
1.9 months; p<0.001). Median OS was 14.8 months in the everolimus group and 14.4 months in the placebo group (p=0.162); however, these results were confounded by crossover, as 80% of patients in the placebo group were switched to open-label everolimus before the final OS analysis. The most common serious adverse events (AEs) with everolimus were infections, dyspnea, and fatigue.

Nivolumab

Nivolumab is a fully human immunoglobulin G4 PD-1 immune checkpoint inhibitor antibody that inhibits the interaction between PD-1 expressed on activated T-cells and PD-1 ligand (PD-L1) and PD-L2 expressed on tumour cells, with a resulting immunomodulatory and antineoplastic activity. Single-agent nivolumab was compared with everolimus in the randomized, open-label, phase 3 CheckMate-025 trial of 821 patients with advanced clear-cell RCC who had progressed on one or two antiangiogenic therapies. The primary endpoint was OS and it was significantly greater with nivolumab than with everolimus (25.0 vs. 19.6 months; p=0.002). Improved objective response rate (ORR) was noted with nivolumab at 25% vs. 5% (p<0.001) along with a better toxicity profile (Grade 3 or 4 event rate of 19% vs. 37%). Although, there was no difference in PFS between the two groups, an ad hoc analysis of PFS in patients without progression/death at six months was completed to explore the delayed benefit of nivolumab. Median PFS from this analysis was 15.6 months for nivolumab vs. 11.7 months for everolimus, suggesting improved benefit in responders to therapy from both groups. In general, nivolumab was felt to be quite well-tolerated, with the most common AEs being diarrhea, hypertension, fatigue, anemia, hypertriglyceridemia, nausea, vomiting, and anorexia. Cabozantinib is not yet available in Canada.

Caboza...
trial, a trend towards improved OS was noted in the 28% of enrolled patients who had previously been treated with two antiangiogenic regimens.a

Conclusion

The optimal sequencing of targeted therapies for the treatment of mRCC beyond first-line has evolved as new therapies have developed. Cabozantinib (in the U.S. and Europe) and nivolumab have supplanted everolimus as standards of care in the second-line setting. Axitinib remains a second-line option, but it will likely be relegated to the third-line or beyond given its neutral comparison to everolimus, as well as the inferiority of cabozantinib and nivolumab to the same. Given the lack of direct comparison though, axitinib will likely be the drug of choice over everolimus. The combination of lenvatinib and everolimus remains promising, but economic factors and a lack of phase 3 data will likely limit accessibility in the Canadian setting. Clinical trials to compare these treatment options to better assess their efficacy would be ideal in clarifying their sequencing. However, this is unlikely to occur, given the movement of many of these options into the first-line setting, novel drug development, and the increasing demand for patients for clinical trials. As such, the ongoing development of predictive biomarkers and real-world data collection and analysis will be of major importance in helping choose the appropriate therapy for patients with mRCC.

At present, available consensus statements and guidelines are helpful in guiding treatment choices. The most recently published European guidelines provide some recommendations on the sequencing of agents in mRCC patients and the development of a new Canadian consensus statement is underway. Ultimately, the selection of treatments in the second-line setting and beyond will be driven by best evidence, clinical judgement (including consideration of drug toxicity, patient goals, performance status, comorbidities, tolerability of previous treatments), and, of course, drug availability.

References