Inguinoscrotal hernias involving urologic organs: A case series

Jeffrey Peter McKay, MD; Michael Organ, MD; Scott Bagnell, MD; Christopher Gallant, MD; Christopher French, MD, FRCSC

*Department of Urology, Dalhousie University, Halifax, NS; †Department of Family Medicine, Dalhousie University, Halifax, NS; ‡Department of Urology, Memorial University, St. John’s, NL

Published online June 19, 2014.

Abstract

We report 2 cases of inguinoscrotal hernias involving urologic organs. The first case involved an elderly gentleman with a history of micturition by squeezing his scrotum. He was diagnosed as having a right-sided indirect inguinal hernia involving the right ureter and bladder. Treatment was surgical. The second case involved an achondroplastic male who presented with acute kidney injury. He had bilateral hydronephrosis and ureteric obstruction secondary to an ureteroinguinal herniation bilaterally. The presentation, diagnosis, and treatment of inguinoscrotal hernias involving the bladder and ureters are discussed.

Introduction

As of 2003, there have been 190 reported cases of inguinal hernias containing urologic organs.1 Massive bladder herniation into the scrotum is rare. Presentation is often with double phase micturition, urgency, frequency, nocturia and hematuria.2 The preferred treatment is surgery. We present a case of a 78-year-old male who described difficulties with micturition for 10 years, but other symptoms led to his diagnosis of inguinoscrotal bladder herniation. Ureteroinguinal herniation is also very rare, with 140 reported cases as of April 2009.3 The second case involves an achondroplastic male with bilateral ureteroinguinal herniations causing obstruction. We discuss the presentation, imaging studies and treatment of these conditions.

Case 1

A 78-year-old male with a swollen scrotum presented to the emergency room with a 2-day history of increasing right groin pain. Pain was positional and noted to be worse when sitting and standing and relieved when supine. Associated features included nausea and difficulty initiating micturition. The patient elevated and squeezed his scrotum to initiate voids. Medical history included hypertension, arthritis, and psoriasis. He had no previous surgeries and his body mass index (BMI) was normal. On examination, his abdomen had an umbilical hernia, but was otherwise unremarkable. Examination of his scrotum revealed a grapefruit-sized, right hemiscrotal mass originating above the inguinal ligament. The mass was positive for transillumination and was nontender to palpation. He had bilateral hydronephrosis and ureteric obstruction secondary to an ureteroinguinal herniation bilaterally. The presentation, diagnosis, and treatment of inguinoscrotal hernias involving the bladder and ureters are discussed.
We report the case of a 54-year-old achondroplastic male who presented to hospital with acute kidney injury. His creatinine was 200 μmol/L on presentation. A renal ultrasound was performed which demonstrated bilateral hydronephrosis and cortical thinning. A CT scan showed severe bilateral hydronephrosis and hydroureter secondary to bilateral inguinal ureteric herniations. In Fig. 3 the herniations with red asterisks indicate the ureters proximally and the yellow asterisks denote the ureters distally.

The patient denied hematuria, frequency, urgency, dysuria, bowel symptoms, fevers, chills and abdominal pain. His medical history was significant for achondroplasia, hearing loss and polycystic kidney disease. Moreover, his family history was significant for Alport syndrome and renal cell carcinoma in his mother.

On examination, the patient’s body habitus was consistent with achondroplasia with a BMI of 39. He had obvious bilateral inguinal hernias in both the supine and standing positions. His abdomen was soft, non-tender and nondistended. There was no organomegaly.

Bilateral retrograde ureteric stent placement was attempted at a peripheral hospital. Due to the tortuosity of the ureters bilaterally, the procedure was unsuccessful. The patient was referred to a tertiary care centre for further evaluation and definitive treatment. Stent placement was attempted a second time and failed again due to the tortuous ureter (Fig. 4).

The patient was referred to interventional radiology for antegrade stent placement. Antegrade stents could not be placed (Fig. 5). Bilateral nephrostomy tubes were then inserted.

The patient’s creatinine decreased from 200 μmol/L to his baseline, 120 μmol/L. The patient was discharged with nephrostomy tubes. He underwent a bilateral ureteric reimplantation and bilateral inguinal hernia repairs during the same operation with no complications.
Inguinoscrotal bladder hernias are rare, with less than 100 reported cases. However, it is reported that as many as 4% of inguinal hernias involve the bladder.

Case 1 was an atypical presentation. The patient applied pressure to his scrotum to initiate micturition. Based on his history and physical exam, a CT scan was obtained. A CT scan and ultrasound were reliable to confirm diagnosis. Considering that the patient’s pain resolved over a short period, it was decided that elective surgery (performed by urologic and general surgeons) was the best option to repair the hernia. In this case, excising the bladder from the hernia was difficult, consistent with the chronicity of the defect. After a dissection of the bladder and a ureteric re-implantation, the hernia was successfully repaired. The patient recovered with minimal complications.

Case 2 involved bilateral ureteroinguinal herniations. The two types of ureteroinguinal herniations described in the literature are paraperitoneal and extraperitoneal. Paraperitoneal hernias comprise 80% of inguinoscrotal ureteric hernias and are thought to arise due to adherence of the ureter to the hernia sac posteriorly. Extraperitoneal hernias comprise 20% of ureteroinguinal hernias and contain the ureter without any hernia sac. This type of herniation occurs due to the abnormal development of the ureter from the Wolffian duct or adhesions to the genito-inguinal ligaments, which cause the ureters to descend into the scrotum with the testicles.

When evaluating patients with inguinal hernias, it is important to elicit a detailed history to identify urologic organ involvement. Lower urinary tract symptoms, hematuria, acute urinary obstruction, double phase micturition requiring pressure to initiate or finish voiding, or ipsilateral flank pain with an inguinal hernia may indicate urologic organ involvement and should prompt further investigations with an ultrasound and/or CT scan. If left untreated, inguinal hernias can lead to strangulation of the bladder or ureter, which would require surgical resection with ureteric re-implantation. Depending on the length of ureter involvement, options for repair would include ureteroneocystostomy, psoas hitch, Boari flap or possibly transureteroureterostomy. Also, the ipsilateral kidney may become obstructed and non-functional and serve as a nidus for recurrent pyelonephritis.

If urologic organ involvement is not identified prior to surgical repair, there may be a higher risk of iatrogenic damage to the bladder, ureter or adjacent organs; therefore, identifi-
cation of urologic organ involvement in inguinal hernias is crucial to prevent surgical complications and to avoid complications if left untreated.

Conclusion

Large inguinoscrotal hernias remain rare. A detailed urological history should be performed with any inguinal hernia to rule out bladder or ureteric involvement. When inguinal hernias are suspected on history and physical exam, an ultrasound or CT should be obtained to confirm diagnosis. Surgery should be considered to prevent bladder, ureteric and renal complications and to resolve presenting symptoms. A multidisciplinary approach between Urology and General Surgery departments should also be considered.

Competing interests: Dr. McKay, Dr. Organ, Dr. Bagnell, Dr. Gallant and Dr. French declare no competing financial or personal interests.

This paper has been peer-reviewed.

References

Correspondence: Dr. Jeffrey Peter McKay, Department of Urology, Dalhousie University, Halifax, NS; jeff.mckay@dal.ca