Metastasis to the proximal ureter from prostatic adenocarcinoma: A rare metastatic pattern

Tao Zhang, MD; Qi Wang, MM; Jie Min, MD; Dexin Yu, MD; Dongdong Xie, MD; Yi Wang, MD; Demao Ding, MD; Lei Chen, MD; Ci Zou, MD; Zhiqiang Zhang, MM; Daming Wang, MM

Department of Urology, The Second Hospital of Anhui Medical University, China

Cite as: Can Urol Assoc J 2014;8(11-12):e859-61. http://dx.doi.org/10.5489/cuaj.2169
Published online November 24, 2014.

Abstract

Prostate cancer is one of the most common male malignancies, but it rarely metastasizes to the proximal ureter. We report a case of a 76-year-old man who presented with flank pain and lower urinary tract symptoms. Abdominal computed tomography scan revealed multiple filling defects at the middle of the left ureter, enlarged retroperitoneal lymph nodes, and probable psoas invasion. The patient underwent nephroureterectomy with excision of a cuff of bladder, and was found to have an adhesion between the middle part of left ureter and psoas intraoperatively. The pathological examination displayed positive immunohistochemical staining with prostate-specific antigen and prostate acid phosphatase, supporting the diagnosis of metastatic ureteral tumour from prostate cancer. In this case, periureteral soft tissue and ureteral muscular layer were infiltrated by metastatic tumour, whereas the mucosa was spared. The periureteral lymphatic pathway played an important role in the metastatic procedure of prostate cancer to the proximal ureter.

Introduction

Prostate cancer is the second most common cancer in men. Its incidence has been decreasing in many developed countries, yet increasing rapidly in some Asian countries. The most common metastatic targets for prostate cancer include lymph nodes, bone, lung, and liver; however, metastasis to the proximal ureter is unusual. We present a case of ureteral tumour caused by metastasis of prostatic cancer, and review the literature to discuss the possible pathway of this metastatic procedure.

Case report

In February 2012, a 76-year-old man presented with intermittent pain of the left flank lasting 1 month. He also had a 2-year history of mild obstructive urinary symptoms. He denied hematuria and body weight loss, and his medical and family history was unremarkable. Laboratory workup demonstrated no microscopic hematuria by urinary analysis, and a normal level of alkaline phosphates. Ultrasonographic examination demonstrated only mild hydronephrosis, with a dilated upper ureter on the left side. Cause of the dilatation was a stricture of the lower part of the ureter. To identify the nature of the stricture, we conducted a computed tomography (CT) scan of the patient’s abdomen. It revealed multiple filling defects at the middle part of left ureter with mild hydroureretonephrosis proximal to the site of stricture, enlarged retroperitoneal lymph nodes, and probable psoas invasion (Fig. 1). It was diagnosed as primary urothelial cell carcinoma of left ureter, although cytology detected some squamous, but not malignant, cells.

Because of the symptomatic hydronephrosis and suspected urothelial cell carcinoma of the left ureter, nephroureterectomy with a bladder cuff excision was done. Intraoperatively, he had an adhesion between the middle part of the left ureter and stiff left psoas, which we speculated was primary urothelial cell carcinoma of the left ureter invading the nearby psoas due to the rarity of the metastatic ureteral tumour. The pathological examination of the ureteral mass, however, revealed the adventitia and the muscular wall of the left ureter invaded by malignant cells. He was then diagnosed with prostate adenocarcinoma, as a result of the positive immunohistochemical staining for prostate-specific antigen (PSA) and prostate acid phosphatase (PAP) (Fig. 2).

Subsequently, the following tests were done: serum PSA value which was >100 ng/mL; a digital rectal examination (DRE) which revealed a hard rocky prostate on the bilateral side; and a transrectal ultrasound (TRUS)-guided prostate biopsy. Pathology was significant for adenocarcinoma of the prostate (Gleason score 3+4=7). Concurrent whole body bone scan was also completed which provided the evidence of diffuse skeletal metastasis, including skull, left scapula, right sacroiliac joint, and ischial tuberosity.

To delay the progression of primary prostate cancer and multiple skeletal metastases, we performed medical castra-
tion. The patient was later discharged and received clinical follow-up. His PSA level decreased to 18.14 ng/mL 1 month later, and then to 1.62 ng/mL 3 months later.

Discussion

Prostate cancer is the second most frequently diagnosed cancer and the sixth leading cause of cancer death among men worldwide. It commonly spreads to regional lymph nodes via lymphatic vessels, direct invasion to pelvic organs or systematically to the axial skeleton. In an autopsy study, Disibio and colleagues found that the 5 most common metastatic targets for prostate cancer included regional lymph nodes (26.2%), bone (19.7%), distant lymph nodes (18.4%), lung (12.8%), and liver (7.8%).

Upper urinary tract urothelial tumours involving the ureter are relatively uncommon compared with renal pelvis and true metastatic ureteral tumours from other primary cancers are especially rare. Stow reported the first case of metastatic ureteral tumour from a lymphosarcoma in 1909. The
Metastasis from prostatic adenocarcinoma

definition for metastatic tumour to the ureter is well-docu-
mented by Hulse and O’Neill;7 cases involving the ureter
by direct extension or contiguity must be excluded. Cohen
and colleagues8 reviewed the relevant literature and found
31 cases of true ureteral metastases; of these, the most com-
mon site of the primary lesion included the breast, colon,
lumphoma, and lung – none from the prostate.
Ureteral obstruction caused by prostate cancer frequently
results from invasion of the ureter by direct extension of
the tumour around the intravesical ureter. Therefore, it is
usually bilateral and mostly located at the ureterovesical
junction.9 As noted previously, it is rate that metastatic
tumour from the prostate to the proximal ureter happens
without direct extension. The rarity is presumed to be due to
the lymphatic circulation of the ureter, which is segmental
and drains diagonally or transverse; there is no continu-
ous longitudinal lymphatic network draining directly from
the prostatic area.7 Ureteral stricture can also be caused by
prostate cancer through other patterns. Chalasani and col-
leagues reported a case of prostate cancer with continuous
invasion of the entire length of the ureter up to the renal
pelvis, and no enlarged lymph nodes near the ureter – in
this case the predisposing factors were unknown.10 In our
case, the abdominal CT scan showed multiple enlarged
lymph nodes in the retroperitoneal space around the left
ureter, and the patient had an adhesion between the middle
part of the left ureter and a stiff left psoas at surgery, yet
the distal ureter was normal. Pathological examination of
the ureteral mass revealed the adventitia and the muscular
wall of the ureter invaded by malignant cells; however, the
ureteral mucosa was unaffected. It is reasonable to believe
that prostatic malignant cells were disseminated to the ret-
orperitoneal lymph nodes near the proximal ureter through
the periureteral lymphatic pathway; enlarged lymph nodes
then compressed the ureteral lumen and ultimately extended
to the ureter per continuatum. They did not go through the
lymphatic network in the ureteral wall or continued on the
invasion pathway.

Prostate cancer should be considered in the differential
diagnosis of elderly men presenting with ureteral tumour,
especially in those with enlarged periureteral lymph nodes.
The DRE and PSA tests are uncomplicated and non-invasive
and they should be done on all male patients over 50 with
ureteral tumour to exclude the diagnosis of metastatic ure-
teral tumour from prostate cancer. There is limited value for
TRUS to diagnose prostate cancer, however, it can be used
when the DRE or PSA is abnormal.

Conclusion

We have reported an uncommon case of metastatic ureteral
tumour caused by primary prostate cancer. The periureteral
lymphatic pathway played an important role in the spread of
prostate cancer to the proximal ureter. It is important to raise
clinical awareness of the possibility of unusual metastatic
sites in patients with primary prostate cancer.

Competing interests: Dr. Zhang declares no competing financial or personal interests.

This paper has been peer-reviewed.

References

9966.EPI-10-0437
http://dx.doi.org/10.1016/j.ejca.2004.12.033
6. Stow B. Fibrolymphosarcomata of both ureters metastatic to a primary lymphosarcomata of the anterior
190911000-00009
7. Hulse CA, O’Neill T. Adenocarcinoma of the prostate metastatic to the ureter with an associated ureteral
8. Cohen WM, Freed SZ, Hanson J. Metastatic cancer to the ureter: A review of the literature and case

Correspondence: Dr. Dexin Yu, Department of Urology, The Second Hospital of Anhui Medical
University, China; yudx_urology@126.com